SN74ACT8847
64-Bit Floating Point Unit

Meets IEEE Standard for Single- and Double-
Precision Formats

Performs Floating Point and Integer Add,
Subtract, Multiply, Divide, Square Root, and
Compare

64-Bit |IEEE Divide in 11 Cycles, 64-Bit Square
Root in 14 Cycles

Performs Logical Operations and Logical Shifts
Superset of TI's SN74ACT8837
30-ns, 40-ns and 50-ns Pipelined Performance

Low-Power EPIC™ CMOS

The SN74ACT8847 is a high-speed, double-precision floating point and integer
processor. It performs high-accuracy, scientific computations as part of a
customized host processor or as a powerful stand-alone device. Its advanced
math processing capabilities allow the chip to accelerate the performance of both

CISC- and RISC- based systems.

High-end computer systems, such as graphics workstations, mini-computers and
32-bit personal computers, can utilize the single-chip ’ACT8847 for both floating

point and integer functions.

EPIC is a trademark of Texas Instruments Incorporated.
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Overview

Using a top-down approach, this user guide contains the following major sections:

Introduction (to Microprogrammed Architectures and the 'ACT8847)
SN74ACT8847 Architecture

Microprogramming the ‘ACT8847

Easy-to-Access Reference Guide

Application Notes

The SN74ACT8847 combines a multiplier and an arithmetic-logic unit in a single
microprogrammable VLSI device. The 'ACT8847 is implemented in Texas Instruments
one-micron CMOS technology to offer high speed and low power consumption with
exceptional flexibility and functional integration. The FPUs can be microprogrammed
to operate in multiple modes to support a variety of floating point applications.

_ The 'ACT8847 is fully compatible with the IEEE standard for binary floating point
arithmetic, STD 754-1985. This FPU performs both single- and double-precision
operations, integer operations, logical operations, and division and square root
operations (as single microinstructions).

Understanding the ‘ACT8847 Floating Point Unit

To support floating point processing in IEEE format, the 'ACT8847 may be configured
for either single- or double-precision operation. Instruction inputs can be used to select
three modes of operation, including independent ALU operations, independent multiplier
operations, or simultaneous ALU and multiplier operations.

Three levels of internal data registers are available. The device can be used in
flowthrough mode (all registers disabled), pipelined mode (all registers enabled), or
in other available register configurations. An instruction register, a 64-bit constant
register, and a status register are also provided.

Each FPU can handle three types of data input formats. The ALU accepts data operands
in integer format or IEEE floating point format. A third type of operand, denormalized
numbers, can also be processed after the ALU has converted them to ‘‘wrapped”’
numbers, which are explained in detail in a later section. The 'ACT8847 multiplier
operates on normalized floating point numbers, wrapped numbers, and integer
operands.

Microprogramming the ‘ACT8847

The ‘ACT8847 is a fully microprogrammable device. Each FPU operation is specified
by a microinstruction or sequence of microinstructions which set up the control inputs
of the FPU so that the desired operation is performed.
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Support Tools

Texas Instruments has developed functional evaluation models of the '"ACT8847 in
software which permit designers to simulate operation of the FPU. To evaluate the
functions of an FPU, a designer can create a microprogram with sample data inputs,
and the simulator will emulate FPU operation to produce sample data output files, as
well as several diagnostic displays to show specific aspects of device operation. Sample
microprogram sequences are included in this section.

Design Support

Texas Instruments Regional Technology Centers, staffed with systems-oriented
engineers, offer a training course to assist users of TI LS| products and their application
to digital processor systems. Specific attention is given to the understanding and
generation of design techniques which implement efficient algorithms designed to
match high-performance hardware capabilities with desired performance levels.

Information on VLS! devices and product support can be obtained from the following
Regional Technology Centers:

Atlanta Chicago

Texas Instruments Incorporated Texas Instruments Incorporated
3300 N.E. Expressway, Building 8 515 Algonquin

Atlanta, GA 30341 Arlington Heights, IL 60005
404/662-7945 312/640-2909

Boston Dallas

Texas instruments Incorporated Texas Instruments Incorporated
950 Winter Street, Suite 2800 10001 E. Campbell Road
Waltham, MA 02154 Richardson, TX 75081
617/895-9100 214/680-5066

Northern California Southern California

Texas Instruments Incorporated Texas Instruments Incorporated
5353 Betsy Ross Drive 17891 Cartwright Drive

Santa Clara, CA 95054 Irvine, CA 92714
408/748-2220 714/660-8140

Design Expertise

Texas Instruments can provide in-depth technical design assistance through
consultations with contract design services. Contact your local Field Sales Engineer
for current information or contact VLS| Systems Engineering at 214/997-3970.
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‘ACT8847 Logic Symbol

¢
‘ACT8847
64-Bit Floating Point Unit
CLEARS STATES
CLK — > MASTER CLOCK (EXCEPT C REGISTER) & STATUS =l ¢ RESET
CLKC > C REGISTER CLOCK STALLS OPERATION 1 ——¢— HALT
CLKMODE ———— 1 CLOCK EDGE INSTRUCTION, RA. & RB |FLOWTHROUGH 2—47 PIPESO
BYTEP —— PARITY GENERATION REGISTERS EN
CONFIG1-0 ————] DATA SOURCE
ALU. MULTIPLIER, FLOWTHROUGH PIPES
FAST —S SUDDEN UNDER- AND INSTRUCTION
GRADUAL  |FLOW PIPELINE REGISTERS EN
STATUS, P, S,
AND1-0 —— | ROUNDING MODE  |SELECT  anp st pipeLINg || O THROUGH 24— PIPES2
SRCC —— MULTIPLIER REGISTERS EN
. ALY C REG DA DATA |—e-22 Pa30
ENRC wee PARITY DB DATA —4—-»# PB3-0
FLOWC ——5—1 BYPASS 110 a
SELOP7-0 _T;— OPERAND SOURCE Y BUS |—<4»——<— PY3-0
SELST1-0 ——~~— STATUS SOURCE
ELST1-0 MSH DA DATA |————— PERRA
SELMS/LS —tz SH| | sus STATUS
LSH PARITY DB DATA |——————— PERRB
MASTER/SLAVEL——  —— MSERR
™10 — 22 COMPARATOR
w——Jo | ——<—»——— UNORD
" COMPARISON AGTE
22— STATUS >
| <«»——— AEQB
13
b — |—e—»——— ED
15 ———— INSTRUCTION | «»—— DIVBYO
16 | «»—— vaL
17 | «»—— INEX
I —— | —4—»——— OVER
9 — EXCEPTION | e»—— UNDER
nmo —— o AND |— e »——— DENORM
OTHER | | ¢ —— DENIN
STATUS N
ENRA LOAD RA REGISTER RNDCO
R
ENRB LOAD RB REGISTER SRCEX
5ES R
OES ———LD>] EXCEPTION & OTHER STATUS | EN CHEX
OEs P — .
OEC ——— D] COMPARISON STATUS STEX1-0
= L ———»——
oty — I v31.vo, PY3-PYO NEG
| —e»—— INF
DAO 0 0 b—e»——vo0 ™~
L] - L]
R P 3
L] . . . w
DA31 31 31 —e>—— Y31 00
DBO 0
. . (&)
2| g
* . v
DB31 31
™~
wn
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'‘ACT8847 Pin Descriptions

Pin descriptions and grid allocation for the "ACT8847 are given on the following pages.
The pin at location A1 has been omitted for indexing purposes.

4 »w ™ v Z2 2 - X . I O M mMm OO ™ P
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Table 1. 'ACT8847 Pin Grid Allocation

PIN PIN PIN PIN PIN PIN
NO. NAME | NO. NAME[| NO. NAME | NO. NAME | NO. NAME| NO. NAME
A1 missing [C2 YO E3 FAST J15 FLOWC |[P1 ENRC |St NC
A2 INF c3 Y3 E4 GND J16 SRCC P2 PIPESO [S2 PBO
A3 Y5 C4 Y6 E14 GND J17 BYTEP P3 RESET |S3 DBO
A4 Y8 cs5 Y9 E15 AGTB K1 SELOP3 | P4 PB1 S4 DB4
A5 Y11 c6 Y12 E16 AEQB K2 SELOP4 |P5 DB1 [S5 DB11
A6 Y14 C7 Y15 E17 MSERR |K3 SELOPS |P6 DB5 |[S6 DB12
A7 Y17 c8 Y18 F1 15 K4 GND P7 DB9 |S7 DB15
A8 Y20 c9 Y23 F2 13 K14 GND P8 DB16 [S8 DB19
A9 Y21 C10 Y26 F3 RNDO K15 PA1 P9 DB21 |[S9 DB23
A10 Y24 C11 Y30 F4 GND K16 PA2 P10 DB28 [S10 DB26
A11 Y27 C12 PY1 F14 GND K17 PA3 P11 DAO [S11 DB30
A12 Y29 C13 UNDER| F15 PERRA L1 SELOP6 |P12 DA4 [S12 DA2
A13 PYO C14 INEX |F16 OEY L2 SELOP7 |P13 DA8 |[S13 DAB
A14 PY3 C15 DENIN | F17 OES L3 CLK P14 DA12 [S14 DA10
A15 IVAL C16 SRCEX | G1 17 L4  Vce P15 DA19 [S15 DA14
A16 NEG C17 CHEX | G2 16 L14 GND P16 DA22 |S16 DA15
A17 NC D1 I G3 14 L15 DA30 P17 DA23 |S17 DA17
B1 ED D2 RND1 | G4 v¢c L16 DA31 R1 PIPEST1|T1 NC
B2 Y2 D3 Y1 G14 Voo L17 PAO R2 HALT (T2 PB3
B3 Y4 D4 GND G15 OEC M1 ENRB R3 PB2 |T3 DB3
B4 Y7 D5 Vce G16 SELMS/TS|M2 ENRA R4 DB2 |[T4 DB7
B5 Y10 D6 GND | G17 TEST1 M3 CLKC RE DB6 |T5 DB8
B6 Y13 D7 GND H1 110 M4 GND R6 DB10 |T6 DB13
B7 Y16 D8 Vce H2 19 M14 Vce R7 DB14 |[T7 DB17
B8 Y19 D9 GND H3 I8 M15 DA27 R8 DB18 T8 DB20
B9 Y22 D10 GND H4 GND M16 DA28 R9 DB22 [T9 DB24
B10 Y25 D11 Vg H14 GND M17 DA29 R10 DB27 |T10 DB25
B11 Y28 D12 GND H15 TESTO N1 CONFIGO | R11 DB31 |T11 DB29
B12 Y31 D13 GND H16 SELST1 |N2 CONFIG1 | R12 DA3 {T12 DA1
B13 PY2 D14 Vce H17 SELSTO |N3 CLKMODE| R13 DA7 |T13 DAS5S
B14 OVER D15 STEX1|J1 SELOP2 |N4 PIPES2 R14 DA11 |T14 DA9
B15 RNDCO |D16 STEXO | J2 SELOP1 |N14 DA18 R15 DA16 |T15 DA13
B16 DENORM|D17 UNORD| J3 SELOPO |N15 DA24 R16 DA20 [T16 NC
B17 DIVBYO [E1 12 Ja Vee N16 DA25 R17 DA21 |T17 NC
C1 PERRB |E2 10 J14 Ve N17 DA26
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Table 2. 'ACT8847 Pin Functional Description

PIN
NAME NO. voszt DESCRIPTION
DATA BUS SIGNALS (96 PINS)
DAO P11
DA1 T12
DA2 S12
DA3 R12
DA4 P12
DAS T13
DAG6 S13
DA7 R13
DAS8 P13
DA9 T14
DA10 S14
DA11 R14
DA12 P14
DA13 T15
82:; 212 DA 3.2-bit input data.bus. Data can be latched in a
DA16 R15 | .64-b|t temporary register or loaded directly into an
DA17 S17 input register
DA18 N14
DA19 P15
DA20 R16
DA21 R17
DA22 P16
DA23 P17
DA24 N15
DA25 N16
DA26 N17
DA27 M15
DA28 M16
DA29 M17
DA30 L15
DA31 L16
DBO S3
DB1 P5
DB2 R4
DB3 T3
DB4 S4 DB 32-bit input data bus. Data can be latched in a
DB5 P6 1 64-bit temporary register or loaded directly into an
DB6 R5 input register.
DB7 T4
DBS8 T5
DB9 P7
DB10 R6

Tlnput, output, and high-impedance state.
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Table 2. ‘ACT8847 Pin Functional Description (Continued)

PIN

NAME NO. yojzt DESCRIPTION
DATA BUS SIGNALS (96 PINS)
DB11 S5
DB12 S6
DB13 T6
DB14 R7
DB15 S7
DB16 P8
DB17 T7
DB18 R8
DB19 S8
DB20 T8 DB32-bit input data bus. Data can be latched in a
DB21 PS | 64-bit temporary register or loaded directly into an
DB22 R9 input register.
DB23 S9
DB24 T9
DB25 T10
DB26 S10
DB27 R10
DB28 P10
DB29 T11
DB30 S11
DB31 R11
YO Cc2
Y1 D3
Y2 B2
Y3 Cc3
Ya B3
Y5 A3
Y6 Cc4
Y7 B4
Y8 A4
Y9 C5
Y10 B5 1/0/Z | 32-bit Y output data bus
Y1 A5
Y12 Cc6
Y13 B6
Y14 A6
Y15 Cc7
Y16 B7
Y17 A7
Y18 cs8
Y19 B8
Y20 A8

TInput, output, and high-impedance state.
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Table 2. '/ACT8847 Pin Functional Description (Continued)

PIN 1
NAME NO. 1/0/Z DESCRIPTION
DATA BUS SIGNALS (96 PINS)
Y21 A9
Y22 B
Y23 Cc9
Y24 A10
Y25 B10
Y26 c10 1/0 32-bit Y output data bus
Y27 Al11
Y28 B11
Y29 A12
Y30 C11
Y31 B12
PARITY AND MASTER/SLAVE SIGNALS (16 PINS)
When high, selects parity generation for each byte
of input (four parity bits for each bus). When low,
BYTEP J17 | ) . L
selects parity generation for whole 32-bit input
{one parity bit for each bus). Even parity is used.
MSERR E17 (0] Master/Slave error output pin
PAO L17
PA1 K15 _
! Parity inputs for DA data
PA2 K16
PA3 K17
PBO S2
PB1 P4 o
| Parity inputs for DB data
PB2 R3
PB3 T2
PERRA F15 o DA data parity error. output. When Itnigh, signals a
byte or word has failed an even parity check.
PERRB c1 0 DB data parity error.output. When h.igh, signals a
byte or word has failed an even parity check.
PYO A13
PY1 12 1/0/2 | Y t ity dat
PY2 B13 port parity data
PY3 A14
CLOCK, CONTROL, AND INSTRUCTION SIGNALS (46 PINS)
CLK L3 | Master clock for all registers except C register
CLKC M3 | C register clock
Selects whether temporary register loads only on
CLKMODE N3 | rising clock edge (CLKMODE = L} or on falling
edge (CLKMODE = Hj).

Tinput, output, and high-impedance state.
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Table 2. ‘ACT8847 Pin Functional Description (Continued)

PIN
NAME

NO.

vorzt

DESCRIPTION

CLOCK, CONTROL, AND INSTRUCTION SIGNALS (46 PINS)

CONFIGO N1 | Select data sources for RA and RB registers from
CONFIG1 N2 DA bus, DB bus and temporary register
When high, enables loading of RA register on a
ENRA M2 | rising clock edge if the RA register is not disabled
(see PIPESO below).
When high, enables loading of RB register on a
ENRB M1 | rising clock edge if the RB register is not disabled
{see PIPESO below).
S NT=Ted When low, enables write to C register when CLKC
ENRC P1 : goes high. 9
When low, selects gradual underflow (IEEE model).
FAST E3 | When high, selects sudden underfiow, forcing all
denormalized inputs and outputs to zero.
When high, causes product or sum to bypass
C register, so that product or sum appears on the
C register output bus. Timing is similar to P register
FLOWC J15 | or S register feedback operands. C register remains
unchanged. Product or sum may also be
simultaneously fed back in usual manner {not
through C register).
Stalls operation without altering contents of
HALT R2 | instruction or data registers {except the CREG,
which has a separate write enable). Active low.
10 E2
11 D1
12 E1
13 F2
14 G3
15 F1 I Instruction inputs
16 G2
17 G1
18 H3
19 H2
110 H1
OEC G15 | Comparison status output enable. Active low.
OEs F17 | Excgption status and other status output enable.
Active low.
OEY F16 | Y bus output enable. Active low.
When low, enables instruction register and,
PIPESO P2 | depending on setting of ENRA and ENRB, the RA

and RB input registers. When high, puts instruction,
RA and RB registers in flowthrough mode.

TInput, output, and high-impedance state.
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Table 2. 'ACT8847 Pin Functional Description {(Continued)

PIN
NAME

NO.

voszt

DESCRIPTION

CLOCK, CONTROL, AND INSTRUCTION SIGNALS (46 PINS)

When low, enables pipeline registers in ALU and

PIPES1 R1 | multiplier. When high, puts pipeline registers in
flowthrough mode.
When low, enables status register, product (P) and
PIPES2 N4 | sum (S) registers. When high, puts status register,
P and S registers in flowthrough mode.
Clears internal states, status, and exception disable
RESET P3 | register. Contents of internal pipelin_e register; are
lost. Does not affect other data registers. Active
low.
RNDO F3 | Rounding mode control pins. Select four IEEE
RND1 D2 rounding modes.
When high, indicates the mantissa of a number
RNDCO B15 1/0/Z2 . . . .
has been increased in magnitude by rounding.
SELOPO J3
SELOP1 J2
SELOP2 J1
SELOP3 K1 | Select operand sources for multiplier and ALU
SELOP4 K2
SELOP5 K3
SELOP8 L1
SELOP7 L2
gitgﬁ) ::é | Select status source during chained operation
When low, selects LSH of 64-bit result to be
o output on the Y bus. When high, selects MSH of
SELMSILS  G16 ! 64-bit result. (No effect on single-precision
operations.)
When low, selects ALU as data source for C
SRCC J16 I register. When high, selects multiplier as data
source for C register.
TESTO H15 | Test pins
TEST1 G17
STATUS SIGNALS (17 PINS)
Comparison status or zero detect pin. When high,
AEQB E16 1/0/Z indicates that A and B operands are equal during a

compare operation in the ALU. If not a compare, a

high signal indicates a zero result on the Y bus.

TInpu'(, output, and high-impedance state.
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Table 2. 'ACT8847 Pin Functional Description (Continued)

PIN
NAME

NO.

voszt

DESCRIPTION

STATUS SIGNALS (17 PINS)

AGTB

E15

110/Z

Comparison status pin. When high, indicates that A

operand is greater than B operand.

CHEX

Cc17

1/O0/Z

Status pin indicating an exception during a chained
function. If 16 is low, indicates the multiplier is the
source of an exception. If 16 is high, indicates the
ALU is the source of an exception.

DENIN

C15

110/Z

Status pin indicating a denormal input to the
multiplier. When DENIN goes high, the STEX pins
indicate which port had the denormal input.

DENORM

B16

110/2

Status pin indicating a denormal output from the
ALU or a wrapped output from the multiplier. In
FAST mode, causes the result to go to zero when
DENORM is high.

DIVBYO

B17

110/Z2

Status pin indicating an attempted operation
involved dividing by zero

ED

B1

110/Z

Exception detect status signal representing logical
OR of all enabled exceptions in the exception
disable register

INEX

C14

1/10/Z

Status pin indicating an inexact output

INF

A2

1/0/Z

Status pin. When high, indicates output value is
infinity.

IVAL

A15

1/0/Z

Status pin indicating that an invalid operation or a
nonnumber {NaN) has been input to the multiplier
or ALU.

NEG

A16

110/2

Status pin. When high, indicates result has
negative sign.

OVER

B14

1/10/Z2

Status pin indicating that the result is greater the
largest allowable value for specified format
{exponent overflow).

SRCEX

C16

1/0/Z

Status pin indicating source of exception, either
ALU (SRCEX = L) or multiplier (SRCEX = H).

STEXO
STEX1

D16
D15

1/0/Z

Status pins indicating that a nonnumber (NaN) or
denormal number has been input on A
port {(STEX1) or B port (STEXO).

UNDER

c13

1/0/Z

Status pin indicating that a result is inexact and
less than minimum allowable value for format
{exponent underflow).

UNORD

D17

110/Z

Comparison status pin indicating that the two
inputs are unordered because at least one of them
is @ nonnumber (NaN).

TInput, output, and high-impedance state.
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Table 2. "ACT8847 Pin Functional Description (Concluded)

PIN

NAME NO voszt DESCRIPTION
SUPPLY AND N/C SIGNALS (33 PINS)
Vee D5
Vee D8
Vee D11
Vee D14
xgg 2?4 | 5-V supply voltage pins
vee J4
Vee J14
vee L4
Vee M14
GND D4
GND D6
GND D7
GND D9
GND D10
GND D12
GND D13
g:g 5?4 | Ground pins. NOTE: All ground pins
GND Fa should be used and connected.
GND F14
GND H4 .
GND H14
GND K4
GND K14
GND L14
GND M4
NC A17
NC S1
NC T No internal connection. Pins should be left floating.
NC T16
NC T17

TInput, output, and high-impedance state.
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‘ACT8847 Specifications

abso

lute maximum ratings over operating free-air temperature range

(unless otherwise noted)?

Supply voltage, VCC « -+ v -0.5Vto6V
Input clamp current, IiK (V] < Oor V| > Vce) ... +20 mA
Output clamp current, IoK (Vo < Oor Vo > VcC) - - - - +50 mA
Continuous output current, lo (Vo = Vgl -+ - oo +50 mA
Continuous current through Vcc or GND pins . ... .. .. +100 mA
Operating free-air temperature range . ... ......... 0°C to 70°C
Storage temperaturerange . . . .............. -65°C to 150°C

1 Stresses beyond those listed under ‘‘absolute maximum ratings’’ may cause permanent damage
to the device. These are stress ratings only and functional operation of the device at these or
any other conditions beyond those indicated under *recommended operating conditions’’ is
not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect

device reliability.

recommended operating conditions

SN74ACT8847
PARAMETER UNIT
MIN NOM MAX

Vee Supply voltage 4.75 5.0 5.25 \Y
VIH High-level input voltage 2 vee A
ViL Low-level input voltage 0 0.8 \
IoH High-level output current -8 mA
loL Low-level output current 8 mA
\ Input voltage 0 Vee \'
Vo Output voltage 0 vee \Y
dt/dv Input transition rise or fail rate 0 15 ns/V
Ta Operating free-air temperature 0 70 °C
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electrical characteristics over recommended operating free-air
temperature range (unless otherwise noted)

TA = 25°C | SN74ACT8847
PARAMETER| TEST CONDITIONS | V UNIT
S CC 'MIN TYP MAX| MIN TYP MAX
o oun 4.75 V 4.74 4.55
OH = # 5.25 V 5.24 5.05
VOH \
| o 475V 3.7
= -8m
OH 5.25 V 2.7
A 475V 0.01 0.10
oL = <V 5.25 V 0.01 0.10
VoL \
o amA 4.75 vV 0.45
oL = 5.25 V 0.45
] V| = VeccorO 5.25 V +5( pA
oz V| = Veeor 0, lg 5.25 V +10| uA
Icca V) = VegorQ, lg 5.256 V 200] uA
Ci Vi = Vecor0 5V 10 pF

7-36




switching characteristics

PIPELINE
FROM TO SN74ACT8847-30
NO. | PARAMETER (INPUT) (OUTPUT) CONTROLS UNIT
PIPES2-PIPESO| MIN MAX
1 tpd1 DA/DB/Inst |Y OUTPUT 111 t| ns
INPUT REG |Y OUTPUT 110 70
2 tpd2 ns
INPUT REG STATUS 110 70
PIPELN REG |Y OUTPUT 10X 48
3 tpd3 ns
PIPELN REG | STATUS 10X 48
OUTPUT REG | Y OUTPUT OXX 20
4 thd4 ns
OUTPUT REG| STATUS oXX 20
5 tpd5 SELMS/LS |Y OUTPUT XXX 18| ns
Y OUTPUT
CLK Il but 111 3.0
6 tpd6 1 INVALID all bu ns
7 t CLK? STATUS Il but 111 3.0 ns
pd7 invaup | & '
— Y OUTPUT
SELMS/LS XXX 1.5
8 tpd8 ! INVALID ns
9 tg1? CLKt CLK? 010 56
10 tg2? CLK? CiLK? 000 30
Delay time, CLKC after CLK to insure s
n
11 t43 data cap.tured in C register is da_ta 12 td-0§
clocked into sum or product register by
that clock. (PIPES2-PIPESO = OXX)
12 ten1 OEY Y OUTPUT XXX 12
13 ten2 OEC, OES STATUS XXX 12
—— ns
14 tdis1 OEY Y OUTPUT XXX 12
15 tdis2 OEC, OES STATUS XXX 12

TThis parameter no longer tested and will be deleted on next Data Manual revision.
$Minimum clock cycle period not guaranteed when operands are fed back using FLOWC to bypass

the C register and operands are used on the same clock cycle.
§td is the clock cycle period.
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setup and hold times

PIPELINE
SN74ACT8847-30
NO. PARAMETER CONTROLS UNIT
PIPES2-PIPESO | MIN MAX
16 | tguq | Inst/control before CLK? XX0 12
17 | tgy2 | DA/DB before CLKT XXO0 1
18 | tgy3 | DA/DB before 2nd CLKT (DP) XX1 40 ns
19 | tgy4 | CONFIG1-0 before CLK? XX0 12
20 | tgys | SRCC before CLKCt XXX 10
21 | tgue | RESET before CLK? XX0 12
22 th1 Inst/control after CLK? XXX 1
23 | ty2 | DA/DB after CLK? XXX 1 ns
24 | th3 | SRCC after CLKC? XXX 1
25 | thq | RESET after CLK? XX0 6
CLK/RESET requirements
PARAMETER SN74ACT8847-30 UNIT
MIN MAX

CLK high | 10
tw Pulse duration CLK low 10 ns

RESET 10
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switching characteristics

PIPELINE
FROM TO SN74ACT8847-40
NO. | PARAMETER CONTROLS UNIT
{(INPUT) (OUTPUT)
PIPES2-PIPESO| MIN MAX
1 tpd1 DA/DB/Inst Y QUTPUT 11 1| ns
INPUT REG |Y OUTPUT 110 90
2 tpd2 ns
INPUT REG | STATUS 110 90
PIPELN REG |Y OUTPUT 10X 60
3 tpd3 ns
PIPELN REG | STATUS 10X 60
OUTPUT REG | Y. OUTPUT 0XX 24
4 thd4 ns
OUTPUT REG| STATUS 0XX 24
5 thd5 SELMS/LS |Y OUTPUT XXX 20| ns
Y OUTPUT
LK Il but 111 .
6 tpd6 CLKT INVALID all bu 3.0 ns
7 1 CLK?® STATUS Il but 111 3.0 ns
u .
pd7 invaLp | °
8 t SELMS/LS Y OUTPUT XXX 1.5
. ns
pd8 INVALID
9 tg1} CLK? CLKt 010 72
10 tgo? CLK? CLK? 000 40
Delay time, CLKC after CLK to insure
ns
dat tured in C ister is dat
1 td3 ata cap. ur register i a. a 16 td-0§
clocked into sum or product register by
that clock. (PIPES2-PIPESO = OXX)
12 ten1 OEY Y OUTPUT XXX 16
13 ten2 OEC, OES STATUS XXX 16
— ns
14 tgis 1 OEY Y OUTPUT XXX 16
15 tdis2 OEC, OES STATUS XXX 16

TThis parameter no longer tested and will be deleted on next Data Manual revision.
¥Minimum clock cycle period not guaranteed when operands are fed back using FLOWC to bypass

the C register and operands are used on the same cycle.
§td is the clock cycle period.
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setup and hold times

PIPELINE SN74ACT8847-40
NO. PARAMETER CONTROLS UNIT
PIPES2-PIPESO | MIN MAX
16 | tsyq | Inst/control before CLK?1 XX0 14
17 | tsy2 | DA/DB before CLKT XX0 13
18 | tgy3 | DA/DB before 2nd CLK?' (DP) XX1 52 o
19 | tgua | CONFIG1-0 before CLKT XXO0 14
20 | tsus5 | SRCC before CLKCt XXX 14
21 | tgug | RESET before CLKT XXO0 14
22 th1 Inst/control after CLK1 XXX 3
23 th? DA/DB after CLK? XXX 3
24 | tha | SRCC after CLKCT XXX 3 ne
25 | thg | RESET after CLK? XXO0 6
CLK/RESET requirements
PARAMETER SN74ACT8847401 uniT
MIN MAX
CLK high | 15
tw Pulse duration CLK low 15 ns
RESET 12
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switching characteristics

PIPELINE
FROM TO SN74ACT8847-50
NO. | PARAMETER (INPUT) (OUTPUT) CONTROLS UNIT
PIPES2-PIPESO| MIN MAX
1 tpd1 DA/DB/Inst |Y OUTPUT 11 t] ns
INPUT REG |Y OUTPUT 110 120
2 tpd2 INPUT REG | STATUS 110 120] ™
PIPELN REG |Y OUTPUT 10X 75
3 tpd3 PIPELN REG | STATUS 10X 75| "
OUTPUT REG | Y OUTPUT 0XX 36
4 'pd4  [QUTPUT REG| STATUS OXX 36|
5 tpds SELMS/LS |Y ouTPUT XXX 24| ns
6 t CLK? Y OUTPUT | but 111 3.0 ns
pd6 INVALID
STATUS
7 tpd7 CLK?1 INVALID all but 111 3.0 ns
8 tpdg SELMS/LS Y"\?::SET XXX 1.5 ns
9 tg1? CLK?t CLKt 010 100
10 g2t CLK1? CLK? 000 50
Delay time, CLKC after CLK to insure ns
11 t43 data cap.tured in C register is da-ta 16 td-O§
clocked into sum or product register by
that clock. (PIPES2-PIPESO = OXX)
12 ten1 OEY Y OUTPUT XXX 20
13 ten2 OEC, OES | STATUS XXX 20|
14 tdis1 OEY Y OUTPUT XXX 20
15 tdis2 OEC, OES | STATUS XXX 20

TThis parameter no longer tested and will be deleted on next Data Manual revision.
*Minimum clock cycle period not guaranteed when operands are fed back using FLOWC to bypass
the C register and operands are used on the same cycle.
Ttq is the clock cycle period.
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setup and hold times

PIPELINE
SN74ACT8847-50
NO. PARAMETER CONTROLS UNIT
PIPES2-PIPESO | MIN MAX
16 | tgy1 | Inst/control before CLK?T XX0 16
17 | tsy2 | DA/DB before CLK?T XX0 16
18 | tgy3 | DA/DB before 2nd CLKt (DP) XX1 75 ns
19 | tguyq4 | CONFIG1-O before CLKT XXO0 18
20 | tgy5 | SRCC before CLKCt XXX 16
21 | tgue | RESET before CLK? XX0 16
22 th1 Inst/control after CLK? XXX 3
23 th2 | DA/DB after CLK? XXX 3 ns
24 | th3 | SRCC after CLKC? XXX 3
25 | th4 | RESET after CLK? XX0 6
CLK/RESET requirements
PARAMETER SN74ACT8847-50 UNIT
MIN MAX

CLK high | 15
tw Pulse duration CLK low 15 ns

RESET 15
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‘ACT8847 Load Circuit

The load circuit for the "ACT8847 is shown in Figure 1.
TESTER PIN
ELECTRONICS
loL

TEST

S1
From ouTpuT FONT 5 v
UNDER TEST L

T

lIoH
TIMING
c.t 1 | \Y S1
PARAMETER L oL OH L
1]
ten 220 | s0pF| 1mA ~1mA | 1.5V | CLOSED
tPLH
t
tgis |-PHZ | 50pF| 16mA | -16mA | 1.5V | CLOSED
tpLZ
tod 50 pF — — — OPEN

TCL includes probe and test fixture capacitance.

NOTE: All input pulses are supplied by generators having the following characteristics:
PRR < 1 MHz, Zo = 50 Q, t; < 6 ns, tf < 6 ns.

Figure 1. Load Circuit
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SN74ACT8847 64-Bit Floating Point Unit
Introduction

Designing with the SN74ACT8847 floating point unit (FPU) requires a thorough
understanding of computer architectures, microprogramming, and IEEE floating point
arithmetic, as well as a detailed knowledge of the ‘ACT8847 itself. This introduction
presents a brief overview of the ‘ACT8847 and discusses a number of issues when
designing and programming with this FPU.

Major Architectural Features

The overall architecture for a floating point system is determined by a combination
of design factors. The principal consideration is the set of performance targets that
the floating point processor has to achieve, usually expressed in terms of clock cycle
period, operating mode (vector or scalar), and operand precision (32 bit, 64 bit, or
other). Of almost equal importance are design constraints of cost, complexity, chip
count, power consumption, and requirements for interfacing to other processors.

The architecture of the 'ACT8847 is optimized to satisfy several processing and
interface requirements. The FPU has two 32-bit input buses, the DA and DB data buses,
and one 32-bit output bus, the Y bus. This three-port design provides much greater
/O bus bandwidth than can be achieved by a single-port device (one 32-bit I/O bus).
Two single-precision inputs can be simuitaneously loaded on the input buses while
a result is being output on the Y bus.

Internally, the "ACT8847 FPU consists of two main functional blocks: the multiplier
and the ALU (see Figure 5). Either the multiplier or the ALU can operate independently,
or the two functional units can be used simultaneously in ‘“chained’’ mode. When
operating independently, each block of the FPU performs a separate set of arithmetic
or logical functions. The multiplier supports multiplication, division and square roots.
The ALU supports addition, subtraction, format conversions, logical operations, and
shifts. Integer division and integer square root require both the multiplier and the ALU;
the final result comes from the ALU.

In chained mode, a multiplier operation executes in parallel with an ALU operation.
Possible examples include calculations of a sum of products (multiply and accumulate)
or a product of sums (add and then muitiply). The sum of products computation requires
a total of four operands: two new inputs to be multiplied, the sum of previous products,
and the current product to be added to the sum, as shown in Table 3.
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DA31-DAO DB31-DBO

32 32
CONFIGURATION
LOGIC
¢ ¢
64 164
INPUT REGISTER INPUT REGISTER
% 4
164 164
MULTIPLIER ALU
L l
164 16a
Y MUX
32
Y31-YO
Figure 5. High Level Block Diagram
Table 3. Sum of Products Calculation
MULTIPLIER OPERATION ALU OPERATION
A=*B —
C+D (A «B) +0
E«F (C»D) + (A+B)
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Because the ‘ACT8847 has multiple internal data paths and data registers, this sum
of products can be generated by simultaneous operations on new bus data and internal
feedback, without the necessity of storing either the previous accumulation or the
current product off chip. Data flow for the sum of products calculation is shown in

Figure 6.

A * B
I l PREG + SREG

MULTIPLIER “

Figure 6. Multiply/Accumulate Operation

Data Flow in Pipelined Architectures

Several levels of internal data registers are available to segment the internal data paths
of the '/ACT8847. The most basic choice is whether to use the device in flowthrough
mode (with no internal registers enabled) or whether to enable one or more registers.
When none of the internal registers are enabled, the paths through the multiplier and
the ALU are not segmented. In this case, the delay from data input to result output
is the longest.

Enabling one or more registers divides the data paths so that data can be clocked into
internal registers, instead of from an external source to an external destination. Enabling
the input registers permits data and instruction inputs to be registered on chip. Also,
the hardware division and square root operations which the 'ACT8847 performs require
that the input registers be enabled.

In the main data paths, three sets of internal registers are available in the ACT8847:
input registers, pipeline registers in the multiplier and ALU logic blocks, and output
registers to capture results from the multiplier and the ALU. When all three levels of
data registers are enabled, the register-to-register delay inside the device is minimized.
This is the fastest operating mode, and in this configuration the 'ACT8847 is said
to be ‘‘fully pipelined.’” While one instruction is executing, the next instruction along
with its associated operands may be input to device so that overlapped operations
occur (see Figure 7).

The selection of operating mode, from flowthrough to fully pipelined, determines the
latency from input to output, the number of clock cycles required for inputs to be
processed and results to appear. For each register level enabled in the data path, one
clock cycle is added to the latency from input to output.
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Control Architectures for High-Speed Microprogrammed Architectures

A separate control circuit is required to sequence the operation of the ‘ACT8847. A
sequencer function within the control circuit controls both the sequencer and FPU as
determined by FPU status outputs. Either a standard microsequencer such as the
SN74ACT8818, or a custom controller such as a PLA or gate array can be used to
control the FPU. Figure 8 shows an example block diagram for a PLA control circuit.

If a standard microsequencer is used, execution addresses for routines stored in the
microprogram memory are generated by the microsequencer. As its name implies,
microprogram memory stores the sequences of microinstructions which control FPU
execution. The 'ACT8847 can be programmed by generating all control bits in a given
microinstruction to select an FPU operation.

One possible control circuit for the ‘ACT8847 consists of a microsequencer,
microprogram memory, and one or more microinstruction registers, together with status
logic as required to support a specific floating point implementation. A control circuit
without an instruction register is typically too slow for use with the "ACT8847. At
least one microinstruction register is used to hold the current instruction being executed
by the FPU and sequencer (see Figure 9).

Inclusion of the microinstruction register divides the critical path from the sequencer
through the program memory to the FPU control inputs, permitting much faster
execution times. However, when all the internal registers of the FPU are enabled, FPU
operation may be fast enough to require a second register in the control circuit. In
this case, a register on the output bus of the sequencer captures each microprogram
address, and the microinstruction register captures each microinstruction (see
Figure 10).

EXTERNAL —_— PROGRAMMABLE
CONTROL/STATUS . LOGIC ARRAY
i (PLA) DA

{32 D¢B32

'ACT8847 FPU

STATUS ] i 32

Y

\ 4

Figure 8. PLA Control Circuit Example
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Introducing registers in the FPU data paths and the control circuit complicates 1/0
timing, status output timing, the status logic and the microprogram for the FPU and
the sequencer. These timing relationships affect branches, jumps to subroutine, and
other operations depending on FPU status. Some of these programming issues are
discussed below.

Microprogram Control of an "ACT8847 FPU Subsystem

A microprogram to control the ‘ACT8847 must take into account not only the FPU
operation but also the sequencer operation, especially when the system is performing
a branch on status or handling an exception.

Several options are available for dealing with such exceptions. The 'ACT8847 can
be programmed to discard operands in invalid formats, and some exceptions caused
by illegal operations. In general, though, the microprogram should be designed to handle
a range of status results or exceptions. Hardware timing considerations such as pipeline
delays in both control and data paths must be studied to minimize the difficuity of
performing branches to status exception handlers.

Later sections of the 'ACT8847 user guide present detailed examples of
microinstructions and timing waveforms, along with interpretations of status outputs
and the choices involved in handling IEEE status exceptions.

‘ACT8847 Data Formats

The ‘ACT8847 accepts either operands as normalized |IEEE floating point numbers,
(ANSI/IEEE standard 754-1985), unsigned 32-bit integers, or 2's complement integers.
Floating point operands may be either single precision (32 bits) or double precision
(64 bits).

IEEE formats for floating point operands, both single and double precision, consist of
three fields: sign, exponent, and fraction, in that order. The leftmost (most significant)
bit is the sign bit. The exponent field is 8 bits long in single-precision operands and
11 bits long in double-precision operands. The fraction field is 23 bits in single precision
and 52 bits in double precision. The value of the fraction contains a hidden bit, an
implicit leading ‘’1’’, as shown below:

1.fraction
The representation of a normalized floating point number is:
(—1)8 * 1.f » 2(e-bias)

where the bias is either 127 for single-precision operands or 1023 for double-precision
operands.

The formats for single-precision and double-precision numbers are shown in Figure 11
and Figure 12, respectively. Further details of IEEE formats and exceptions are provided
in the |IEEE Standard for Binary Floating Point Arithmetic, ANSI/IEEE Std 754-1985.
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31 30 23 22 0

s e f

s: sign of fraction
e: 8-bit exponent biased by 127
f: 23-bit fraction

Figure 11. IEEE Single-Precision Format

63 62 52 51 0

s| e f

s: sign of fraction
e: 11-bit exponent biased by 1023
f: 52-bit fraction

Figure 12. IEEE Double-Precision Format

The 'ACT8847 aiso handles two other operand formats which permit operations with
very small floating point numbers. The ALU accepts denormalized floating point
numbers, that is, floating point numbers so small that they could not be normalized.
If these denormal operands are input to the multiplier, they will cause status exceptions.
Denormals can be passed through the ALU to be ‘‘wrapped,”’ and the wrapped
operands can then be input to the multiplier.

A denormalized input has the form of a floating point number with a zero exponent,
a nonzero mantissa, and a zero in the leftmost bit of the mantissa (hidden or implicit
bit). Using single precision, a denorm is equal to:

(—1)8 * (2)— 126 = fraction
For double precision, a denorm is equal to:
(—1)8 * (2) = 1022 » fraction

A denormalized number results from decrementing the biased exponent field to zero
before normalization is complete. Since a denormalized number cannot be input to
the multiplier, it must first be converted to a wrapped number by the ALU. A wrapped
number is a number created by normalizing a denormalized number’s fraction field and
subtracting from the exponent the number of shift positions (minus one) required to
do so. The exponent is encoded as a two’s complement negative number. When the
mantissa of the denormal is normalized by shifting it left, the exponent field decrements
from all zeros (wraps past zero) to a negative two’s complement number (except in
the case of 0.1XXX..., where the exponent is not decremented).

Floating point formats handled by the ‘ACT8847 are presented in Table 4.
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Status Outputs

Status flags are provided to signal both floating point and integer results. Integer status
is provided using AEQB for zero, NEG for sign, and OVER for overflow/carryout.

Status exceptions can result from one or more error conditions such as overflow,
underflow, operands in illegal formats, invalid operations, or rounding. Exceptions may
be grouped into two classes: input exceptions resulting from invalid operations or
denormal inputs to the multiplier, and output exceptions resulting from illegal formats,
rounding errors, or both.

SN74ACT8847 Architecture

Overview

The SN74ACT8847 is a high-speed floating point unit implemented in Tl's advanced
1-um CMOS technology. The device is fully compatible with IEEE Standard 754-1985
for addition, subtraction, multiplication, division, square root, and comparison.

The 'ACT8847 FPU also performs integer arithmetic, logical operations, and logical
shifts. Absolute value conversions, floating point to integer conversions, and integer
to floating point conversions are also available. The ALU and muiltiplier are both included
in the same device and can be operated in parallel to perform sums of products and
products of sums (see Figure 13).

7-60



PERRA PA DA31-DAO DB831-DBO PB PPERRB

32 4
PARITY TEMPORARY PARITY
CHECK REGISTER CHECK
2 CONFIG1-
CONFIGO
84

64

RA INPUT
REGISTER

ENRA

RB INPUT
REGISTER

INSTRUCTION
REGISTER

11010
SELOP7-
Mux1 Mux2 Mux3 Muxa SELOPO
PIPES2-
PIPES1
64 6 64 84 FAST
RND1-RNDO
MULTIPLIER CORE i ALY +
PIPELINE REGISTER PIPELINE REGISTER
INSTRUCTION
PIPELINE
-1 LIZER
ADDER/ROUNDER —‘ NORMALIZE j— REGISTER
+ | ]
64 b ’f 64 (D¢_ INSTRUCTION
PIPELINE
l REGISTER
|7 PRODUCT (P} REGISTER [ SUM (S) REGISTER J
[ 64 {6a |
AN
SACC 4 € MUX
, —<-Fiowe
——« ALY
————4 BYTEP
CLKC —b- ax
NR ——4 PIPESO
———-—4~ CLKMODE
———« RESEY
2
FLOWC ~»- 70 = TP1-TPO
——4 Veo
— 4 an
64 4 64
_ I STATUS l ¢ SELST1
SELMS/TS A\ ¥ Mux REGISTER SELSTO
FROM
INSTRUCTION ~ ~- — 3 "
PIPELINE
nzsnsrsn@
——a~ OEC

e

SN74ACT8847

4 MASTER/ D DENIN
SLAVE UNORD  hiveve  ANDCO
" COMPARE | AGTB 5 SRCEX
1 3 AEQB yex CHEX
h AGA8 over STEX1-STEXO
PY3-PYO OEY v31.vo MSERR UNDER NEG
DENORM  INF

Figure 13. 'ACT8847 Detailed Block Diagram
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IEEE formatted denormal numbers are directly handied by the ALU. Denormal numbers
must be wrapped by the ALU before being used in multiplication, division, or square
root operations. A fast mode in which all denormals are forced to zero is provided
for applications not requiring gradual underflow.

The ‘ACT8847 input buses can be configured to operate as two 32-bit data buses
or as a single 64-bit bus, providing a number of system interface options. Registers
are provided at the inputs, outputs, and inside the ALU and multiplier to support
multilevel pipelining. These registers can be bypassed for nonpipelined operation.

A clock mode control allows the temporary input register to be clocked on the rising
edge or the falling edge of the clock to support double-precision ALU operations at
the same rate as single-precision operations. A feedback register (C register) with a
separate clock is provided for temporary internal storage of a multiplier result, ALU
result or constant.

Four multiplexers select the multiplier and ALU operands from the input registers, C
register or previous multiplier or ALU result. Resuits are output on the 32-bit Y bus;
a Y output multiplexer selects the most significant or least significant half of the result
if a double-precision number is being output.

To ensure data integrity, parity checking is performed on input data, and parity is
generated for output data. A master/slave comparator supports fault-tolerant system
design. Two test pin control inputs allow all I/Os and outputs to be forced high, low,
or placed in a high-impedance state to facilitate system testing.

Pipeline Controls

Six data registers in the 'ACT8847 are arranged in three levels along the data paths
through the multiplier and the ALU. Each level of registers can be enabled or disabled
independently of the other two levels by setting the appropriate PIPES2-PIPESO inputs.
When enabled, data is latched into the register on the rising edge of the system clock
(CLK). A separate instruction pipeline register stores the instruction bits corresponding
to the operation being executed at each stage.

The levels of pipelining are shown in Figure 14. The first set of registers, the RA and
RB input registers, are controlied by PIPESO. These registers may be used as inputs
to the ALU, multiplier, or both.

The pipeline registers are the second register set. When enabled by PIPES1, these
registers latch intermediate values in the multiplier or ALU.

The results of the ALU and multiplier operations may optionally be latched into two
output registers by setting PIPES2 low. The P (product) register holds the result of
the multiplier operation; the S {sum) register holds the ALU resuit.

Table 5 shows the settings of the registers controlied by PIPES2-PIPESO. Operating
modes range from fully pipelined (PIPES2-PIPESO = 000) to flowthrough
(PIPES2-PIPESO = 111). The instruction pipeline registers are also set accordingly.
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Table 5. Pipeline Controls (PIPES2-PIPES0)

PIPES2-PIPESO REGISTER OPERATION SELECTED

Enables input registers (RA, RB)

Makes input registers (RA, RB) transparent
Enables pipeline registers

Makes pipeline registers transparent

Enables output registers (PREG, SREG, Status)

= O X X X X
X X = 0 X X
XXX X =0

Makes output registers (PREG, SREG, Status) transparent

In flowthrough mode all three levels of registers are transparent, a circumstance which
may affect some double-precision operations. Since double-precision operands require
two steps to input, at least half of the data must be clocked into the temporary register
before the remaining data is placed on the DA and DB buses.

When all registers (except the C register) are enabled, timing constraints can become
critical for many double-precision operations. In clock mode 1, the ALU can perform
a double-precision operation and output a result during every clock cycle, and both
halves of the result must be read out before the end of the next cycle. Status outputs
are valid only for the period during which the Y output data is valid.

Similarly, double-precision multiplication is affected by pipelining, clock mode, and
sequence of operations. A double-precise multiply may require two cycles to execute
and two cycles to output the result, depending on the settings of PIPES2-PIPESO.

Duration of valid outputs at the Y multiplexer depends on settings of PIPES2-PIPESO
and CLKMODE, as well as whether all operations and operands are of the same type.
For example, when a double-precision multiply is followed by a single-precision
operation, one clock cycle must intervene between the dissimilar operations. The
instruction inputs are ignored during this clock cycle.

Temporary Input Register

A temporary input register is provided to enable loading of two double-precision
numbers on two 32-bit input buses in one clock cycle. The contents of the DA bus
are loaded into the upper 32 bits of the temporary register; the contents of DB are
loaded into the lower 32 bits.

A clock mode signal (CLKMODE) determines the clock edge on which the data will
be stored in the temporary register. When CLKMODE is low, data is loaded on the
rising edge of the clock. With CLKMODE set high, the temporary register loads on
a falling edge and the RA and RB registers can then be loaded on the next rising edge.
The temporary register loads during every clock cycle.
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RA and RB Input Registers

Two 64-bit registers, RA and RB, are provided to hold input data for the multiplier
and ALU. Data is taken from the DA bus, DB bus and the temporary input register.
The registers are loaded on the rising edge of clock CLK if the enables ENRA and ENRB
are set high. PIPESO must be low.

Data input combinations to the "ACT8847 vary depending on the precision of the
operands and whether they are being input as A or B operands. Loading of external
data operands is controlled by the settings of CLKMODE and CONFIG1-CONFIGO,
which determine the clock timing for loading and the registers that are used. (See Figure
15).

Configuration Controls

Three input registers are provided to handle input of data operands, either single
precision or double precision. The RA, RB, and temporary registers are each 64 bits
wide. The temporary register is {ordinarily) used only during input of double-precision
operands.

Double-precision operands are loaded by using the temporary register to store half
of the operands prior to inputting the other half of the operands on the DA and DB
buses. As shown in Table 6, four configuration modes for selecting input sources are
available for loading data operands into the RA and RB registers.

DA DB

Pt

TEMPORARY REGISTER
MSH ! LSH

IS

T ? 1

e\ (NS N

CONFIGO L
ENRA MSH LSH MSH LSH
RA INPUT REGISTER l— RB INPUT REGISTER
ENRB

Figure 15. Input Register Control
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Table 6. Double Precision Input Data Configuration Modes

LOADING SEQUENCE

DATA LOADED INTO TEMP
REGISTER ON FIRST CLOCK
AND RA/RB REGISTERS ON

DATA LOADED INTO RA/RB
REGISTERS ON SECOND

SECOND cLockt ctock
CONFIG1 CONFIGO DA DB DA DB

0 0 B operand B operand A operand A operand
(MSH) (LSH) (MSH) (LSH)

0 1 A operand B operand A operand B operand
(LSH) {LSH) (MSH) (MSH)

1 0 A operand B operand A operand B operand
{(MSH) (MSH) (LSH) (LSH)

1 1 A operand A operand B operand B operand
(MSH) (LSH) (MSH) (LSH))

TOn the first active clock edge (see Clock Mode Settings), data in this column is loaded into the temporary
register. On the next rising edge, operands in the temporary register and the DA/DB buses are loaded into

the RA and RB registers.

When single-precision or integer operands are loaded, the ordinary setting of
CONFIG1-CONFIGO is 01, as shown in Table 7. This setting loads each 32-bit operand
in the most significant half (MSH) of its respective register. Single-precision operands
are loaded into the MSHs and adjusted to double precision because the data paths
internal to the device are all double precision. It is also possible to load single-precision
operands with other CONFIG settings but two clock edges are required to load both
the A and B operands on the DA bus. The operands are input as the MSHs of the A
and B operands (see Table 6). For example, to load single-precision operands using
CONFIG1-CONFIGO = 10, the A and B operands are input one active clock edge before

the instruction.

Table 7. Single-Precision Input Data Configuration Mode

DATA LOADED INTO
RA/RB REGISTERS ON

FIRST CLOCK
CONFIG1 CONFIGO DA DB NOTE
0 1 A operand B operand This mode is ordinarily used for single-

precision operations.

Clock Mode Settings

Timing of double-precision data inputs is determined by the clock mode setting, which
allows the temporary register to be loaded on either the rising edge (CLKMODE = 0)
or the falling edge of the clock (CLKMODE = 1). Since the temporary register is not
used when single-precision operands are input, clock modes O and 1 are functionally
equivalent for single-precision operations using CONFIG1-CONFIGO = 01.
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The setting of CLKMODE can be used to speed up the loading of double-precision
operands. When the CLKMODE input is set high, data on the DA and DB buses are
loaded on the falling edge of the clock into the MSH and LSH, respectively, of the
temporary register. On the next rising edge, contents of the DA bus, DB bus, and
temporary register are loaded into the RA and RB registers, and execution of the current
instruction begins. The setting of CONFIG1-CONFIGO determines the exact pattern
in which operands are loaded, whether as MSH or LSH in RA or RB.

Double-precision operation in clock mode O is similar except that the temporary register
loads only on a rising edge. For this reason, the RA and RB registers do not load until
the next rising edge, when all operands are available and execution can begin.

A considerable advantage in speed can be realized by performing double-precision
operations with CLKMODE set high. In this clock mode, both double-precision operands
can be loaded on successive clock edges, one falling and one rising. If the instruction
is an ALU operation, then the operation can be executed in the time from one rising
edge of the clock to the next rising edge. Both halves of a double-precision ALU result
must be read out on the Y bus within one clock cycle when the 'ACT8847 is operated
in clock mode 1.

The discussion above assumes that the system is able to furnish two sets of operands
in one cycle (one set on the falling edge of the clock and the other set on the next
rising edge). This assumption may not be valid, since the system is required to ‘‘double
pump’’ the input data buses.

Even for a system that is not able to double pump the input data buses, using clock
mode 1 can reduce microcode size substantially resulting in increased system
throughput. To iliustrate, take the case of an operation where the operand(s) are
furnished by one or more of the feedback registers (refer to Table 8). Since the input
data buses are not being used to furnish the operands, the data on the buses at the
time of the instruction is unimportant. By setting CLKMODE high, the instruction begins
after the first cycle, resulting in a savings of one cycle.

Table 8a. Double-Precision CREG + PREG Using CLKMODE = 0, PIPES2-0 = 010

DA | DB | TEMP | INSTR | RA | RB s
CYCLE | CLKMODE } g, | gus | REG BUS | REG | REG | REG
1 0 X X X c+P | X X X
2 ) X X X c+P | X X X

3 X X X X X X X | C+P

Table 8b. Double-Precision CREG + PREG Using CLKMODE = 0, PIPES2-0 = 010

DA | DB | TEMP | INSTR | RA | RB s
CYCLE | CLKMODE | p,c | gys | REG BUS | REG | REG | REG
1 1 X X X c+P | x X X

2 X X X X X X X | C+P
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Going one step further, take the case of an operation where only one operand needs
to be furnished by the input data buses (refer to Table 9). To take advantage of clock
mode 1, set the CONFIG lines so that the external operand comes directly from the
DA and DB bus, as opposed to coming from the temporary register. Since the temporary
register is not used to provide an operand, the data latched into it is inconsequential.
It naturally follows then that the clock edge used to load the temporary register is
unimportant. So by setting CLKMODE high, a double-precision instruction will begin
after one cycle, instead of two cycles.

Table 9a. Double-Precision PREG + RB Using CLKMODE = 0, PIPES2-0 = 010

DA DB TEMP INSTR RA RB S
CYCLE CLKMODE BUS BUS REG BUS REG REG REG
1 0 X X X P + RB X X X
2 0 RB(M) | RB(L) RB P + RB X RB X
3 X X X X X X X P + RB

Table Sb. Double-Precision PREG + RB Using CLKMODE = 1, PIPES2:0 = 010

DA DB TEMP INSTR RA RB S
CYCLE CLKMODE BUS BUS REG BUS REG REG REG
1 1 RB(M) | RB(L) RB P + RB X RB X
2 X X X X X X X P + RB

Operand Selection

Four multiplexers select the muitiplier and ALU operands from the RA and RB registers,
the previous multiplier or ALU result, or the C register (see Figure 16). The multiplexers
are controlled by input signals SELOP7-SELOPO as shown in Tables 10 and 11. For
division and square root operations, operands must be sourced from the input registers

RA and RB.

Table 10. Multiplier Input Selection

A1 (MUX1) INPUT B1 {(MUX2) INPUT
SELOP7? SELOP6 | OPERAND SOURCE! | SELOP5 SELOP4 | OPERAND SOURCE!
(o] 0 Reserved o] 0 Reserved
0 1 C register 0 1 C register
1 0 ALU feedback 1 0 Multiplier feedback
1 1 RA input register 1 1 RB input register

T For division or square root operations, only RA and RB registers can be selected as sources.
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Table 11. ALU Input Selection

A2 (MUX3) INPUT B2 (MUX4) INPUT
SELOP3  SELOP2 | OPERAND SOURCE' | SELOP1 SELOPO | OPERAND SOURCET
0 (o] Reserved 0 0 Reserved
0 1 C register 0 1 C register
1 (o] Multiplier feedback 1 0 ALU feedback
1 1 RA input register 1 1 RB input register

T For division or square root operations, only RA and RB registers can be selected as sources.

As shown in Tables 10 and 11, data operands can be selected from five possible
sources, including external inputs from the RA and RB registers, feedback from the
P (Product) and S (Sum) registers, and a stored value in the C register. Contents of
the C register may be selected as either the A or the B operand in the ALU, the multiplier,
or both. When an external input is selected, the RA input always becomes the A
operand, and the RB input is the B operand.

Feedback from the ALU can be selected as the A operand to the multiplier or as the
B operand to the ALU. Similarly, multiplier feedback may be used as the A operand
to the ALU or the B operand to the multiplier. During division or square root operations,
operands may not be selected except from the RA and RB input registers
(SELOP7-SELOPO = 11111111).

Selection of operands also interacts with the selected operation in the ALU or the
multiplier. ALU operations with one operand are performed only on the A operand {with
the exception of the Pass B operation). Also, depending on the instruction selected,
the B operand may optionally be forced to zero in the ALU or to one in the multiplier.

If an operation uses one or more feedback registers as operands, the unused bus(es)
can be used to preload operand(s) for a later operation. The data is loaded into the
RA or RB input register(s); when the data is needed as an operand, the SELOPS pins
are set to select the RA or RB register(s), but the register input enables (ENRA, ENRB)
are not enabled. The one restriction on preloading data is that the operation being
performed during the preload MUST use the same data type (single-precision, double-
precision, or integer) as the data being loaded. Operands cannot be preloaded within
square root or divide instructions.

C Register

The 64-bit constant (C) register is available for storing the result of an ALU or multiplier
operation before feedback to the multiplier or ALU. The C register has a separate clock
input (CLKC), input source select (SRCC), and write enable (ENRC, active low).

The C register loads from the P or the S register output, depending on the setting of
SRCC. SRCC = 1 selects the multiplier as the input source. Otherwise, the ALU is
selected when SRCC = 0. The SRCC input is not registered with the instruction inputs.
Depending on the operation selected and the settings of PIPES2-PIPESO, an offset
of one or more cycles may be necessary to load the desired result into the C register.
The register only loads on a rising edge of CLCK when ENRC is low. (See Figure 17).
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A separate control (FLOWC) is available to bypass the C register when feeding an
operand back on the C register feedback bus. When FLOWC is high, the output of
the P or S register (as selected by SRCC) bypasses the C register without affecting
the C register’s contents. Direct P or S feedback is unaffected by the FLOWC setting.

Pipelined ALU

The pipelined ALU contains a circuit for floating point addition and/or subtraction of
aligned operands, a pipeline register, an exponent adjuster and a normalizer/rounder
as shown in Figure 18. An exception circuit is provided to detect denormal inputs;
these can be flushed to zero if the FAST input is set high. If the FAST input is low,
the ALU accepts a denormal as input. A denorm exception flag (DENORM) goes high
when the ALU output is a denormal.

Integer processing in the ALU includes both arithmetic and logical operations on either
two’s complement numbers or unsigned integers. The ALU performs addition,
subtraction, comparison, logical shifts, logical AND, logical OR, and logical XOR.

The ALU may be operated independently or in parallel with the multiplier. Possible ALU
functions during independent operation are given in Table 12.

|

[ EXPONENT SUBTRACTER ]
{ PREALIGNMENT ]
1 INTEGER ALU ]
[ NORMALIZER 1
[ ROUNDER |

I

Figure 18. Functional Diagram for ALU
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Table 12. Independent ALU Operations

SINGLE OPERAND TWO OPERANDS
Pass Add
Move Subtract
Format Conversions Compare
Wrap Denormalized Number AND
Unwrap OR
Shift XOR

Pipelined Multiplier

The pipelined multiplier (see Figure 19) performs a basic multiply function, division
and square root. The operands can be single-precision or double-precision floating point
numbers and can be converted to absolute values before multiplication takes place.
Integer operands may also be used. Independent multiplier operations are summarized
in Table 13.

If the operands to the muitiplier are double precision or mixed precision {ie. one single
precision and one double precision), then one extra clock cycle is required to get the
product through the muitiplier pipeline. This means that for PIPES1 = 1, one clock
cycle is required for the multiplier pipeline; for PIPES1 = 0, two clock cycles are required
for the multiplier pipeline.

RECODER B

e

MULTIPLIER/DIVIDER |

[

[ CONVERTER |
L ROUNDER j
| NORMALIZER |

!

Figure 19. Functional Diagram for Multiplier
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Table 13. Independent Multiplier Operations

SINGLE OPERAND TWO OPERANDS
Multiply
Divide

Square Root

An exception circuit is provided to detect denormalized inputs; these are indicated
by a high on the DENIN signal. Denormalized inputs must be wrapped by the ALU before
multiplication, division, or square root. If results are wrapped (signaled by a high on
the DENORM status pin), they must be unwrapped by the ALU.

The multiplier and ALU can be operated simultaneously by setting the 110 instruction
input high. Division and square root are performed as independent multiplier operations,
even though both multiplier and ALU are active during divide and SQRT operations.

Data Output Controls

Selection and duration of results from the Y output multiplexer may be affected by
several factors, including the operation selected, precision of the operands, registers
enabled, and the next operation to be performed. The data output controls are not
registered with the data and instruction inputs. When the device is microprogrammed,
the effects of pipelining and sequencing of operations should be taken into account.

Two particular conditions need to be considered. Depending on which registers are
enabled, an offset of one or more cycles must be allowed before a valid result is available
at the Y output multiplexer. Also, certain sequences of operations may require both
halves of a double-precision result to be read out within a single clock cycle. This is
done by toggling the SELMS/LS signal in the middle of the clock period.

When a single-precision result is output, the SELMS/LS signal has no effect. The
SELMS/LS signal is set low only to read out the LSH of a double-precision resulit (see
Figure 20). To read out a result on the Y bus, the output enable OEY must be low.
OEY is an asynchronous signal.

7-74



[ Propuct RecisTeR | [ SUM REGISTER ]

4
64 1 64

I6——j\ Y MUX /
%
/ 64
MS/iS OUTPUT
SELMS/LS . LOGIC
FROM

INSTRUCTION

X
32
REGISTER
oEv _V

Y BUS

Figure 20. Y Output Control

Parity Checker/Generator

When BYTEP is high, internal even parity is generated for each byte of input data at
the DA and DB ports and compared to the PA and PB parity inputs respectively. If
an odd number of bits is set high in a data byte, a parity check can also be performed
on the entire input data word by setting BYTEP low. In this mode, PAO is the parity
input for DA data and PBO is the parity input for DB data.

Even parity is generated for the Y multiplexer output, either for each byte or for each
word of output, depending on the setting of BYTEP. When BYTEP is high, the parity
generator computes four parity bits, one for each byte of the Y multiplexer output.
Parity bits are output on the PY3-PYO pins; PYO represents parity for the least significant
byte. A single parity bit can also be generated for the entire output data word by setting
BYTEP low. In this mode, PYO is the parity output.

Master/Slave Comparator

A master/slave comparator is provided to compare data bytes from the Y output
multiplexer and the status outputs with data bytes on the external Y and status ports
when OEY, OES and OEC are high. If the data bytes are not equal, a high signal is

generated on the master/slave error output pin (MSERR).

Figure 21 shows an example master/slave circuit. Two 'ACT8847 slave devices verify
the data/status integrity of the '"ACT8847 master.
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Status and Exception Generation

A status and exception generator produces several output signals to indicate invalid
operations as well as overflow, underflow, non-numerical and inexact results, in
conformance with IEEE Standard 754-1985. If output registers are enabled
(PIPES2 =0), status and exception results are latched in the status register on the rising
edge of the clock. Status results are valid at the same time as associated data results

are valid.

Duration and availability of status results are affected by the same timing constraints
that apply to data results on the Y bus. Status outputs are enabled by two signals,
OEC for comparison status and OES for other status and exception outputs. Status
outputs are summarized in Tables 14 and 15.

Table 14. Comparison Status Outputs

SIGNAL RESULT OF COMPARISON (ACTIVE HIGH)

AEQB The A and B operands are equal. A high signal on the AEQB output indicates a
zero result from the selected source except during a compare operation in the ALU.
During integer operations, indicates zero status output.

AGTB The A operand is greater than the B operand.

UNORD | The two inputs of a comparison operation are unordered, i.e., one or both of the
inputs is a NaN.

During a compare operation in the ALU, the AEQB output goes high when the A and
B operands are equal. When any operation other than a compare is performed, either
by the ALU or the multiplier, the AEQB signal is used as a zero detect.
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Table 15. Status Outputs

SIGNAL STATUS RESULT

CHEX If 16 is low, indicates the multiplier is the source of an exception during a chained
function. If 16 is high, indicates the ALU is the source of an exception during a
chained function.

DENIN input to the multiplier is a denorm. When DENIN goes high, the STEX pins indicate
which port had the denormal input.

DENORM | The multiplier output is a wrapped number or the ALU output is a denorm. In the
FAST mode, this condition causes the result to go to zero. It also indicates an
invalid integer operaion, i.e., PASS (-A) with unsigned integer operand.

DIVBYQO | Aninvalid operation involving a zero divisor has been detected by the multiplier.

ED Exception detect status signal representing logical OR of all enabled exceptions
in the exception disable register.

INEX The result of an operation is not exact.

INF The output is the IEEE representation of infinity.

IVAL A NaN has been input to the multiplier or the ALU, or an invalid operation
[0 * o) or (+ o — ®) or (- = + )] has been requested. This signal also goes
high if an operation involves the square root of a negative number. When IVAL
goes high, the STEX pins indicate which port had the NaN.

NEG Output value has negative sign.

OVER The result is greater than the largest allowable value for the specified format.

RNDCO | The mantissa of a number has been increased in magnitude by rounding. If the
number generated was wrapped, then the unwrap round instruction must be used
to properly unwrap the wrapped number (see Table 8).

SRCEX The status was generated by the multiplier. (When SRCEX is low, the status was
generated by the ALU.)

STEXO A NaN or a denorm has been input on the B port.

STEX1 A NaN or a denorm has been input on the A port.

UNDER The result is inexact and less than the minimum allowable value for the specified
format. In the FAST mode, this condition causes the result to go to zero.

In chained mode, results to be output are selected based on the state of the 16 {source
output) pin (if 16 is low, ALU status will be selected; if 16 is high, multiplier status
will be selected). If the nonselected output source generates an exception, CHEX is
set high. Status of the nonselected output source can be forced using the SELST pins,
as shown in Table 16.
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Table 16. Status Output Selection (Chained Mode)

LY8BLIOVYVLNS !

SELST1-
SELSTO STATUS SELECTED
00 Logical OR of ALU and multiplier exceptions (bit by bit)
01 Selects multiplier status
10 Selects ALU status
11 Normal operation (selection based on result source specified by 16 input)

An exception detect mask register is available to mask out selected exceptions from
the multiplier, ALU, or both. Mulitiply status is disabled during an independent ALU
instruction, and ALU status is disabled during multiplier instructions. During chained
operation, both status outputs are enabled.

When the exception mask register has been loaded with a mask, the mask is applied
to the contents of the status register to disable unnecessary exceptions. Status results
for enabled exceptions are then ORed together and, if true, the exception detect (ED)
status output pin is set high (see Figure 23). Individual status outputs remain active
and can be read independently from mask register operations.
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Microprogramming the ‘ACT8847

Because the ‘'ACT8847 is microprogrammable, it can be configured to operate on either
integer or single- or double-precision data operands, and the operations of the registers,
ALU, and multiplier can be programmed to support a variety of applications. The
following sections present not only control settings but the timings of the specific
operations required to execute the sample instructions.

Control Inputs

Control inputs to the 'ACT8847 are summarized in Table 17 below. Several of the
inputs have already been discussed; refer to the page listed in the table for detailed
information.

The remaining inputs are discussed in the following sections. All control signals and
their associated tables are also listed in the 'ACT8847 Reference Guide to provide
a complete, easy-to-access reference for the programmer already familiar with
'‘ACT8847 operation.
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Table 17. Control Inputs

LOW PAGE
SIGNAL HIGH NO.

BYTEP Selects byte parity generation and | Selects single bit parity 7-75

test generation and test

CLK Clocks all registers (except C) on | No effect 7-62

rising edge

CLKC Clocks C register on rising edge No effect 7-70

CLKMODE | Enables temporary input register Enables temporary input 7-66

load on falling clock edge register load on rising clock edge
CONFIG1- | See Table 6 {(RA and RB register See Table 42 (RA and RB 7-65
CONFIGO | data source selects) register data source selects)

ENRC No effect Enables C register load when 7-70
CLKC goes high.

ENRA If register is not in flowthrough, If register is not in flowthrough, | 7-65

enables clocking of RA register holds contents of RA
register

ENRB If register is not in flowthrough, If register is not in flowthrough, | 7-65

enables clocking of RB register holds contents of RB register

FAST Places device in FAST mode Places device in IEEE mode 7-84

FLOW._C | Causes output value to bypass C [ No effect 7-72
register and appear on C register
output bus.

HALT No effect Stalls device operation but 7-85
does not affect registers, internal
states, or status. C register

L loading is not disabled

OEC Disables compare pins Enables compare pins 7-77

OES Disables status outputs Enables status outputs 7-77

OEY Disables Y bus Enables Y bus 7-74

PIPES2- See Table 5 (Pipeline Mode See Table 5 (Pipeline Mode 7-62

PIPESO Control) Control)

RESET No effect Clears internal states, status, 7-86
internal pipeline registers, and
exception disable register. Does
not affect other data registers.

RND1- See Table 18 (Rounding Mode See Table 18 (Rounding Mode 7-84

RNDO Control) Control)

SELOP7- | See Tables 10 and 11 (Muitiplier/ | See Tables 10 and 11 7-68

SELOPO ALU operand selection) {Multiplier/ALU operand selection

SELMS/LS | Selects MSH of 64-bit result for Selects LSH of 64-bit result for 7-74
output on the Y bus {no effect on | output on the Y bus (no effect
single-precision operands) on single-precision operands)

SELST1- | See Table 16 {Status Output See Table 16 (Status Output 7-78

SELSTO Selection) Selection)

SRCC Selects multiplier result for input Selects ALU result for input to 7-70

to C register C register

TP1-TPO | See Table 22 (Test Pin Control See Table 22 (Test Pin Control 7-86

Inputs) Inputs)
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Rounding Modes

The "ACT8847 supports the four IEEE standard rounding modes: round to nearest,
round towards zero (truncate), round towards infinity (round up), and round towards
minus infinity {round down}. The rounding function is selected by control pins RND 1
and RNDO, as shown in Table 18.

Table 18. Rounding Modes

RND1- ROUNDING MODE SELECTED
RNDO

00 Round towards nearest

01 Round towards zero (truncate)

10 Round towards infinity (round up)

11 Round towards negative infinity (round down)

Rounding mode should be selected to minimize procedural errors which may otherwise
accumulate and affect the accuracy of results. Rounding to nearest introduces a
procedural error not exceeding half of the least significant bit for each rounding
operation. Since rounding to nearest may involve rounding either upward or downward
in successive steps, rounding errors tend to cancel each other.

In contrast, directed rounding modes may introduce errors approaching one bit for
each rounding operation. Since successive rounding operations in a procedure may
all be similarly directed, each introducing up to a one-bit error, rounding errors may
accumulate rapidly, especially in single-precision operations.

FAST and IEEE Modes

The device can be programmed to operate in FAST mode by asserting the FAST pin.
In the FAST mode, all denormalized inputs and outputs are forced to zero.

Placing a zero on the FAST pin causes the chip to operate in IEEE mode. In this mode,
the ALU can operate on denormalized inputs and return denormals. if a denorm is input
to the multiplier, the DENIN flag will be asserted, and the result will be invalid. Denormal
numbers must be wrapped before being input to the multiplier. If the multiplier result
underflows, a wrapped number will be output.

Handling of Denormalized Numbers (FAST)

The FAST input selects the mode for handling denormalized inputs and outputs. When
the FAST input is set low, the ALU accepts denormalized inputs but the multiplier
generates an exception when a denormal is input. When FAST is set high, the DENIN
status exception is disabled and all denormalized numbers, both inputs and results,
are forced to zero.

A denormalized input has the form of a floating point number with a zero exponent,
a nonzero mantissa, and a zero in the leftmost bit of the mantissa (hidden or implicit
bit). A denormalized number results from decrementing the biased exponent field to
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zero before normalization is complete. Since a denormalized number cannot be input
to the multiplier, it must first be converted to a wrapped number by the ALU. When
the mantissa of the denormal is normalized by shifting it left, the exponent field
decrements from all zeros (wraps past zero) to a negative two's complement number
(except in the case of 0.1XXX...), where the exponent is not decremented.

Exponent underflow is possible during multiplication of small operands even when the
operands are not wrapped numbers. Setting FAST = O selects gradual underflow so
that denormal inputs can be wrapped and wrapped results are not automatically
discarded. When FAST is set high, denormal inputs and wrapped results are forced
to zero immediately.

When the multiplier is in IEEE mode and produces a wrapped number as its result,
the result may be passed to the ALU and unwrapped. If the wrapped number can be
unwrapped to an exact denormal, it can be output without causing the underflow status
flag (UNDER) to be set. UNDER goes high when a result is an inexact denormal, and
a zero is output from the FPU if the wrapped result is too small to represent as a
denormal (smaller than the minimum denorm)}. Table 10 describes the handling of
wrapped multiplier results and the status flags that are set when wrapped numbers
are output from the multiplier.

Table 19. Handling Wrapped Multiplier Qutputs

TYPE STATUS FLAGS SET

OF RESULT DENORM INEX RNDCO NOTES
Wrapped, 1 0 0 Unwrap with ‘Wrapped
exact exact’ ALU instruction
Wrapped, Unwrap with ‘Wrapped
. 1 1 o] . . .
inexact inexact’ ALU instruction
Wrapped, . Unwrap with ‘Wrapped
increased in 1 1 1 , . .

. rounded’ ALU instruction
magnitude

When operating in chained mode, the muitiplier may output a wrapped result to the
ALU during the same clock cycle that the multiplier status is output. In such a case
the ALU cannot unwrap the operand prior to using it, for example, when accumulating
the resuits of previous multiplications. To avoid this situation, the FPU can be operated
in FAST mode to simplify exception handling during chained operations. Otherwise,
wrapped outputs from the multiplier may adversely affect the accuracy of the chained
operation, because a wrapped number may appear to be a large normalized number
instead of a very small denormalized number.

Because of the latency associated with interpreting the FPU status outputs and
determining how to process the wrapped output, it is necessary that a wrapped operand
be stored external to the FPU (for example, in an external register file) and reloaded
to the A port of the ALU for unwrapping and further processing.

7-85
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Stalling the Device

Operation of the 'ACT8847 can be stalled nondestructively by means of the HALT
signal. Bringing the HALT input low causes the device to inhibit the next rising clock
edge. Register contents are unaltered when the device is stalled, and normal operation
resumes at the next low clock period after the HALT signal is set high.

Stalling the device does not stall the C register. If ENRC is low, CLKC will clock in
data from the source selected by SRCC.

For some operations, such as a double-precision multiply with CLKMODE = 1, setting
the HALT input low may interrupt loading of the RA, RB, and instruction registers,
as well as stalling operation. In clock mode 1, the temporary register loads on the falling
edge of the clock, but the HALT signal going low would prevent the RA, RB, and
instruction registers from loading on the next rising clock edge. It is therefore necessary
to have the instruction and data inputs on the pins when the HALT signal is set high
again and normal operation resumes.

RESET

The RESET input is an active-low signal that asynchronously clears the internal states,
status, and exception disable mask. Internal pipeline registers are cleared, but the RA,
RB, and C registers are not. Operation resumes when RESET goes high again.

Test Pins

Two pins, TP1-TPO, support system testing. These may be used, for example, to place
all outputs in a high-impedance state, isolating the chip from the rest of the system
{see Table 20).

Table 20. Test Pin Control Inputs

™- OPERATION
TPO

0 0 All outputs and i/Os are forced low

0 1 All outputs and |/Os are forced high

1 0 All outputs are placed in a high impedance state
1 1 Normal operation
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Independent ALU Operations

Configuration and operation of the 'ACT8847 can be selected to perform single- or
double-precision floating point and integer calculations in operating modes ranging from
flowthrough to fully pipelined. Timing and sequences of operations are affected by
settings of clock mode, data and status registers, input data configurations, and
rounding mode, as well as the instruction inputs controlling the ALU and the multiplier.

Three modes of operation can be selected with inputs 110-10, including independent
ALU operation, independent multiplier operation, or simultaneous (chained) operation
of ALU and multiplier. Each of these operating modes is treated separately in the
following sections.

The ALU executes single- and double-precision operations which can be divided
according to the number of operands involved, one or two. Tables 21 and 22 show
independent ALU operations with one operand, along with the inputs 110-10 which
select each operation. Conversions from one format to another are handled in this mode,
with the exception of adjustments to precision during two-operand ALU operations.
The wrapping and unwrapping of operands is also done in this mode.

Most format conversions involve double-precision timing. Conversions between single-
and double-precision floating point format are treated as mixed-precision operations
requiring two cycles to load the operands. A single-precision number is loaded in the
upper half (MSH) of its input register. During integer to floating point conversions,
the integer input should be loaded into the upper half of the RA register. If converting
from integer to double precision, then two cycles are required.

Logical shifts can be performed on integer operands using the instructions shown in
Table 22. The data operand to be shifted is input from any valid operand source and
the number of bit positions the operand is to be shifted is input only from the DB bus.
The shift number on the DB bus should be in positive 32-bit integer format, although
only the lowest eight bits are used. The shift number cannot be selected from sources
other than the RB register, and the shift number must be loaded on the same cycle
as the instruction.
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Tables 23 and 24 present independent ALU operations with two operands. When the
operands are different in precision, one single and the other double, the settings of
the precision selects I18-17 will identify the single-precision operand so that it can
automatically be reformatted to double-precision before the selected operation is
executed, and the result of the operation will be double precision.

Precision of each data operand is indicated by the setting of instruction input 18 for
single-operand ALU instructions, or the settings of 18-17 for two-operand instructions.
For single-operand instructions, 17 must be set equal to 18. When the ALU receives
mixed-precision operands (one operand in single precision and the other in double
precision), the single-precision data input is converted to double and the operation
is executed in double precision. It is unnecessary to use the ‘convert float-to-float’
instruction to convert the single-precision operand prior to performing the desired
operation on the mixed-precision operands. Setting I8 and |7 properly achieves the
same effect without wasting an instruction cycle.

Timing for operations with mixed-precision operands is the same as for a corresponding
double-precision operation. In a mixed-precision operation, the single-precision operand
must be loaded into the upper half of its input register. If both operands are single
precision, a single-precision result is output by the ALU. Operations on mixed-precision
data inputs produce double-precision results.
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Two additional independent ALU operations may also be coded. The first of these is
for loading the exception detect mask register.

The exception detect mask register can be loaded with a mask to enable or disable
selected status exceptions. Status bits for enabled exceptions are logically ORed, and
when the result is true, the ED pin goes high. During chained operations, both multiplier
and ALU resuits are ORed. During independent operation, the nonselected status results
are forced to zero.

If the FPU is reset (RESET = 0), the exception detect mask register is cleared. Table 25
describes the settings for the mask register load instruction and the status exceptions
which can be enabled or disabled with the mask.

Table 25. Loading the Exception Disable Mask Register

INSTRUCTION RESULTS
INPUTS
110-17 = 0111 Exception mask load instruction
0 = Load ALU exception disable register
16 L . - .
1 = Load muitiplier exception disable register
15t O = IVAL exception enabled
1 = IVAL exception disabled
14 0 = OVER exception enabled
1 = OVER exception disabled
13 0 = UNDER exception enabled
1_= UNDER exception disabled
12 0 = INEX exception enabled
1 = INEX exception disabled
i O = DIVBYO0 exception gnabled
1 = DIVBYO exception disabled?
10 O = DENORM exception enabled
1 = DENORM exception disabled

T Disabling IVAL in multiplier exception mask register also disables DENIN exception
Only significant when 16 = 1

The second additional independent ALU operation is the NOP (no operation). The table
below shows the coding for the NOP instruction.

Table 26. NOP Instruction

110-10 Operation
01100000000 NOP

Because NOP, in effect, just prevents loading of the P or § registers, these registers
must be enabled (PIPES2 =0) for the NOP to work correctly.
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Timing of a NOP instruction is the same as any single-precision ALU operation, taking
one clock cycle per pipeline stage that is enabled. For example, when the 'ACT8847
is fully pipelined (PIPES2-PIPESO =000), a NOP’s effect (preventing the overwriting
of the P and S registers) will be seen on the third cycle. To hold the results of an
operation on the Y bus for an extra cycle, the NOP instruction is inserted directly after
the instruction whose results are to be held.

The NOP freezes the output register’s contents until new results are to be loaded into
these registers.

Independent Multiplier Operations

In this mode, the multiplier operates on two of five input sources which can be either
single precision, double precision, or mixed. Multiplication, division and square root
may be coded as independent multiplier operations.

Operand precision is selected by 18 and 17, as for ALU operations. The multiplier can
multiply the A and B operands, either operand with the absolute value of the other,
or the absolute values of both operands. The result can also be negated when it is
output. Operations involving absolute value or negated results are valid only when
floating point format is selected. If both operands are single precision, a single-precision
result is output. Operations on mixed-precision data inputs produce double-precision
results.

Floating point operands may be normalized or wrapped numbers, as indicated by the
settings for instruction inputs 11-10. As shown in Table 27, the multiplier can be set
to operate on the absolute value of either or both floating point operands, and the
result of any operation can be negated when it is output from the multiplier. Converting
a single-precision denormal number to doubie precision does not normalize or wrap
the denormal, so it is still an invalid input to the multiplier. Independent multiplier
operations are summarized in Tables 27 thru 29.
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Table 28. Independent Multiply Operations Selected by 14-12 (110 = 0,16 = 1,15 = 0)

ABSOLUTE ABSOLUTE NEGATE
VALUE A VALUE B RESULT OPERATION SELECTED
14 I3 12 14-12 RESULTS?
0=A 0=8B 0= Y 000 A ¥ B
1 = |A] 1 = |B| 1 =-Y 001 —(A * B)
010 A ¥ |B|
011 —(A * |B|)
100 |A| ¥ B
101 —(|A] * B)
110 IA| * |B|
111 —(|A| ¥ |B])
*Ogerations involving absolute values or negated results are valid only when fioating point format is selected
(19 = 0).
Table 29. Independent Divide/Square Root Operations
Selected by 14-12 (110 = 0,16 = 1,15 = 1)
ABSOLUTE DIVIDE/ NEGATE
VALUE A SORT RESULT OPERATION SELECTED
14 13 12 14-12 RESULTST
0=A 0 = Divide 0= Y 000 A/B
1=A 1 = SQRT 1 ==Y 001 —(A/B)
010 SQRT A
011 —(SQRT A)
100 |A| /B
101 —{|A| /B)
110 SQRT |A]
111 —(SQRT |A])

TOperations involving absolute values or negated results are valid only when floating point format is selected

{19 = 0).
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Chained Multiplier/ALU Operations

In chained mode, the "ACT8847 performs simultaneous operations in the multiplier
and the ALU. Operations not only include addition, subtraction, and multiplication,
but also several optional operations which increase the flexibility of the device (see
Table 30). Division and square root operations are not available in chained mode. Format
conversions, absolute values, and wrapping or unwrapping of denormal numbers are
also not available.

The B operand to the ALU can be set to zero so that the ALU passes the A operand
unaltered. The B operand to the multiplier can be forced to the value 1 so that the
A operand to the muitiplier is passed unaitered.

Since in chained mode there are four operands but only two bits (I8 and 17) to select
the operand precision, care must be taken with mixed-precision operations. The A input
to the ALU and to the muitiplier must be of the same precision; just as the B input
to the ALU and to the multiplier must be of the same precision.
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Sample Independent ALU Microinstructions

The following independent ALU timing diagram examples show four register settings,
ranging from fully flowthrough to fully pipelined. X = don’t care.

_X:IRST INSTRUCTION X SECOND INSTRUCTIOW

1 | t
INSTRUCTION: FUNC(10,0), RND{1,0), FAST !
| 1
1 [ 1

[
_LFIRST OPERANDS K SECOND OPERANDS X

! 1
DATA(31,0) A AND B INPUTS
! 1

...........................

! | |
— 1 — e 1 —

OUT(31.0), STATUS(18,0)

NOTE: Assume PIPES2-0=111,_CONFIG1-0=01, ENRA =X, ENRB =X, SELMS/LS =X, OEY =0,
OEC=0ES=0, RESET=HALT =1, TP1-0=11

Figure 24. Single-Precision Independent ALU Operation, All Registers Disabled
(PIPES2-PIPESO = 111, CLKMODE = X)
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Load First Operands Load Second Operands
Begin First Operation Begin Second Operation

l

CLK !

FIRST SECOND
INSTRUCTION ' 4 INSTRUCTION !
] ]
e 16 42291 t— 16 —dje—at 22

|NSTRU(|:TION: FUNC(10.0), RND(1,0), FAST
1

FIRST SECOND
OPERANDS 1 OPERANDS
]
'

T [}

|
w— 17 -l 23 e— 17 4‘—423
DATA(3I‘I,0) A AND B INPUTS

|
|
t
]
FIRST
RESULT 1

[}
—_ 2 —

OUT(31,0) STATUS(18.0)

NOTE: Assume PIPES2-0=110,_CONFIG1-0=01, ENRA=1, ENRB=1, SELMS/LS =X, OEY =0,
OEC=0ES =0, RESET=HALT=1, TP1-0=11

Figure 25. Single-Precision independent ALU Operation, Input Registers Enabled
{PIPES2-PIPESO = 110, CLKMODE = X)
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Load First Operands Load Second Operands

Begin First Operation Begin Second Operation
CLK - 9 —
! | _,. .’
< FIRST >Q§Q§§§§§§§§Q§§§¢< SECOND Y\ AAAX XXX XX XXX XXX
INSTRUCTION INSTRUCTION NN YN
] 1 : ! 1
r— 16 »ie 22 ¥ — 16 —dle—»4-22

L t .
INSTRUCTION: FUNC(10,0), RND(1,0}, FAST
L} I -

1 h | ! !

FIRST SECOND
OPERANDS AAAAAAAAAAAA OPERANDS .............
1 1 1 | ’
17 e 235 l— 17 »e—>-23

DATA{31,0) A AND B INPUTS !

|
W FIRST RESULT

‘ 1 i
OUT(31,0) STATUS(18,0) — 4

NOTE: Assume PIPES2-0=010,_CONFIG1-0=01, ENRA = 1, ENRB=1, SELMS/LS =X, OEY =0,

OEC=0ES=0, RESET=HALT =1, TP1-0=11

Figure 26. Single-Precision Independent ALU Operation, Input and Output
Registers Enabled (PIPES2-PIPESO = 010, CLKMODE = X)
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Load Half of Data

’

CLK :

!

ﬁ FIRST INSTRUCTION

! i
"‘—16-N

t
INSTRUCTION: FUNC(10.0), RND(1,0}, FAST
) 1

| |

HALF OF REST OF
DATA H DATA

{ | 1
— 17 de— 23 —’Il

DATA(31,0) A AND B INPUTS
|

SELMS/LS

OUT(31,0} STATUS(18.0)

NOTE: Assume PIPES2-0=111,_CLKMODE =0, CONFIG1-0=11, ENRA =X, ENRB=X, OEY =0,
OEC=0ES=0, RESET=HALT=1, TP1-0=11

Figure 28. Double-Precision Independent ALU Operation, All
Registers Disabled (PIPES2-PIPESO = 111, CLKMODE = 0)
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Sample Independent Multiplier Microinstructions

The following independent multiplier timing diagram examples show five register
settings, ranging through fully pipelined. Examples for divide and square root are

included in this section. X = don’t care.

X FIRST INSTRUCTION X SECOND INSTRUCTION X
1 ! 1 1
INSTRUCTION: FUNC(1(I),0), RND{(1,0), FAST :
i | f {
|

X FIRST OPERANDS X SECOND OPERANDS X

|
DATA(31,0) A AND B INi’UTS : :
! |
I

| ! e
FIRST
RESULT /Y ) X

[\ AAAXAZLARR [ X |
e 1 — o 1 —

OUT(31.0), STATUS(18.0}

NOTE: Assume PIPES2-0=111, CONFIG1-0=01, ENRA =X, ENRB =X, SELMS/LSX, OEY =0,
OEC=0ES =0, RESET=HALT=1 TP1-0=11

Figure 32. Single-Precision Independent Muitiplier Operation, All Registers
Disabled (PIPES2-PIPESO = 111, CLKMODE = X)

LY88LIOVYLNS !
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Load First Operands Load Second Operands
Begin First Operation Begin Second Operation

SECOND
INSTRUCTION

FIRST
INSTRUCTION

]
le- 16 >4 220 be— 16 —sje—st 22
INSTRUCTION: FUNC(10,0), RND(1,0), FAST .
1

................................

FIRST SECOND
OPERANDS H oPERANDS NN YO Y YOO XX
I 1 1
= 17 e 23| be— 17 te—b 23
DATA(31.0} A AND B INPUTS

OUT(31,0) STATUS(18.0)

NOTE: Assume PIPES2-0=110,_CONFIG1-0=01, ENRA=1, ENRB=1, SELMS/LS =X, OEY =0,
OEC =0OES =0, RESET=HALT=1TP1-0=11

Figure 33. Single-Precision Independent Multiplier Operation, Input
Registers Enabled (PIPES2-PIPESO = 010, CLKMODE = X)
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Load First Operands Load Second Operands

Begin First Operation Begin Second Operation
CLK [ 9 —»
]
! ]
v NV V.9.9.9.0.9.0.0.0.00.9.00 P N .9.0.0.0.0.0.9.0.0 6 0.9.9.
INSTRUCTION AN XY INSTRUCTION AN Y XYY
1 i |

.............

SECOND
OPERANDS

............................

DATA(31,0) A AND B INPUTS !
|

W FIRST RESULT

! !
OUT(31,0) STATUS(18.0} —4—»

NOTE: Assume PIPES2-0=010, CONFIG1-0=01, ENRA = 1, ENRB=1, SELMS/LS =X, OEY =0,
OEC=0ES=0, RESET=HALT=1 TP1-0=11

Figure 34. Single-Precision Independent Multiplier Operation, Input and Output
Registers Enabled (PIPES2-PIPESO = 010, CLKMODE = X)

7-108



(a LV88LIVYLNS

{X = 3AOWNTD ‘000 = 0S3did-Z2S3did)
pejqeuy sieysibey ||y ‘uonessdQ t8ldniniy juepuedspuy| uols|oeld-e|buls "Gg einbBiy

L1=0-1dl ‘L=11vH=13S34 '0=530=230 '0=A30 'X=SVSW13S ‘L=gHN3 ‘L =VHN3 ‘10=0-191dNOD ‘000=0-ZS3dId 8Wnssy ‘310N

II¢...1

.Al.vlt.

Illh_. —l —D— 7| —Mle—De— /|

_Al_ulz

1tgZ |

= v
| !

1l g2 |

(0'8L)SN1VLS (0°LE)LNO

1 gel

1} €2 |

SL1NdNI 8 ANV V [0'LEIVLVA
— Il Ll —e—de— /L] |v.

I
€2 | :
SANVHILO SANVHIdO SANVHIdO
HLdId HLHNO4 QuHL

moz<mmno SANVHIdO
onowm 1syid

X

[——de— 9L —H

1¢¢!

11¢¢ 1

[—de— 91 |!T*|

nee )

1Svd 3 _Ln_ZE ‘{0’ o:OZDu_ ZO_._.UDz.rwz_
9l ||! I|Ivt| 9l .ItI|1*| 91 I.l

1nee

1) 22

\X‘zo:o:mpmz

Hidid

ZO.hUDIhmz_ NOILONYLSNI NOILONYLSNI zO_.—ODI»mZ_
n_z_I._. ozoumm

H1HNO4 1syid

X

_A.||o_.||*| or||!

%

indinQ peon
aunadid peoq

uonesadQ
yyi4 wbag

spuesadQ
Y4 peo

*

ndinQ peon
suljadid peo

uonesadQ
yuno4 uibag

spuesadQ
yuno4 peoy

*

inding peon
aujadid peon

uopesadQ
piyl wbeg

spuesadQ
payl peol

%

suyedid peoy

uopesadQ
puooag uibeg

spuesadQ
puodag peoq

A0

*

uonessdQ
15114 wibeg

spuesedQ
1si1j peoq

7-109



LY88LOVYLNS I

Load Haif
of Operands Load Pipeline

S s S e I

CLK ! |

I I
1 |
(_ FIRST INSTRUCTION
| '
16— 2 ——>|'
I
|

INSTRUCTION: FUNC(10.0). RND{1,0}, FAST

i
HALF REST
I 1ST OPS 18T OPS
T

—17— 23——4:— 18—’4'

DATA(31.0) A AND B INPUTS ,

|
SELMS/LS | |
I

I
OUT(31,0) STATUS(18,0) 3 —s5—9
NOTE: Assume PIPES2-0 = 111, CLKMODE = O, CONFIG1-0 = 11, ENRA = X, ENRB = X, OEY
OEC = OES = 0, RESET = HALT = 1, TP1-0 = 11

Figure 36. Double-Precision Independent Multiplier Operation, All Registers
Disabled (PIPES2-PIPESO = 111, CLKMODE = 0)
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Load Rest Load Rest

of First - of Second
Operands Load Pipeline Operands
Load Haif Load Half
of First Begin First of Second Begin Second
Operands Operation Operands Operation
1 v l
CLK i
- . !
I
H I ] !
{ FIRST INSTRUCTION f SECOND INSTRUCTION )(
l R T v L] l
n———16—:———-i je—sb— 22 fe— 16 —»f 3‘—4'22
| [}
INSTRUCTIOI'\|: FUNC(10,0). RND(1,0}, FAST ! ‘
{ [ ] H i

( HALF X REST f HALF X REST 4X
1ST OPS 1ST OPS 2ND OPS \ 2ND OPS

H ! 1 L H !

Se—djer] le——pje— 23—~}

17 23 17

| HIRL!
b—17 —*ﬂk—17-=~— 23 —4
23
DATA(31,0) A AND B INPUTS

SELMS/LS H
1ol l
‘o’%’c’ .
OUT(31.0) STATUS(18,0) = e

3 5

NOTE: Assume PIPES2-0=110, CONFIG1-0=11, ENRA=1, ENRB=1, OEY =0, OEC=0ES =0,
RESET =HALT=1, TP1-0=11

Figure 37. Double-Precision Independent Multiplier Operation, Input Registers
Enabled (PIPES2-PIPESO = 110, CLKMODE = 1)
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Load Rest

Load Rest of Second
oa S 0 d
of First Load Half perands
Operands of Second Begin Second
Load Half Operands Operation
of First Begin First
Operands Operation Load Pipeline  Load Output
¢ ' '
ck i L— 9 —44— 9 — :
H |
)ﬁ FIRST INSTRUCTION X SECOND INSTRUCTIONX THIRD INSTRUCTION
H—-ﬂ-16 n—zz—un—1e+| H—ZZ-H

INSTRUCTION: FUNC(10 0}, RND(1,0), FAST :

! ]

HALF REST X HALF REST HALF ‘X REST
x 1ST OPS 15T OFs 2ND OPS 2ND OPS * 3RD OPS 3RD OPS
k—17 *23-’| l‘—17~"4—23-ﬂ l‘—17—*—23-ﬂ l‘—17—0"—23
DATA(31,0) A AND B INPUTS

SELMS/LS

OUT(31.0) STATUS(18,0)

NOTE: Assume PIPES2-0 = 010, CONFIG1-0 = 10, ENRA = 1, ENRB = 1, OEY = 0, OEC = OES = 0,
RESET = HALT = 1, TP1-0 =

Figure 38. Double-Precision independent Multiplier Operation, Input and Qutput
Registers Enabled (PIPES2-PIPESO = 010, CLKMODE = 0)
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NOTE: Assume PIPES2-0=110,_CONFIG1-0=01, ENRA=1, ENRB=1, SELMS/LS =X, OEY =0,
OEC=0ES=0, RESET=HALT=1, TP1-0=11

Figure 40. Single-Precision Floating Point Division
(PIPES2-PIPESO = 110, CLKMODE = X)

1 2 3456 7 8

| [
} |
ot YRR

| ]
16—1¢>II l ”s 16—H->I| | .

v

[
3 e

........

NOTE: Assume PIPES2-0=100_CONFIG1-0=01, ENRA=1, ENRB=1, SELMS/LS =X, OEY =0,
OEC=0ES=0, RESET=HALT=1 TP1-0=11

Figure 41. Single-Precision Floating Point Division
(PIPES2-PIPESO = 100, CLKMODE = X)
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vvvvvvvvvvv

el | T |
18 T e 22 16_J0|L—ﬂ— 22
v ORSR unpeTeamined SH aoren)
ol

. 49 j¢—

NOTE: Assume PIPES2-0=010,CONFIG1-0=01, ENRA=1, ENRB=1, SELMS/LS = X, OEY =0,
OEC=0ES=0, RESET=HALT=1, TP1-0=11

Figure 42. Single-Precision Floating Point Division
(PIPES2-PIPESO = 010, CLKMODE = X)

1 2 34656 7 8

CLK ““HHI

1
1
N/ N/
INST @ > )

l y
16 _J‘-:h-l——zz 16—’4%!“‘1_ .
NN N\ \/ NN N\
YRR SRR Huoren

I
4 »

NOTE: Assume PIPES2-0=000, CONFIG1-0=01, ENRA=1, ENRB=1, SELMS/LS=X, OEY =0,
OEC=0ES=0, RESET=HALT=1, TP1-0=11

Figure 43. Single-Precision Floating Point Division
(PIPES2-PIPESO = 000, CLKMODE = X)
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1 2 3456 78910 1112 13 14

I i I ]
i I L I

INST DIV UNDETERMINED NEXT (DP}
1

[ sl —22 16 el _,: le— 22

16 |
(ovoren)

R e )
— -3

NOTE: Assume PIPES2-0 = 110, CONFIG1-0 = O1, ENRA = 1, ENRB = 1, OEY = 0, OEC = OES = O,
RESET = HALT = 1, TP1-0 = 11

Figure 44. Double-Precision Floating Point Division
(PIPES2-PIPESO = 110, CLKMODE = 0)

1 2 345678910 1112 13 14

NOTE: Assume PIPES2-0 = 100, CONFIG1-0 = 01, ENRA = 1, ENRB = 1, OEY = 0, OEC = OES = 0,
RESET = HALT = 1, TP1-0 = 11

Figure 45. Double-Precision Floating Point Division
(PIPES2-PIPESO = 100, CLKMODE = 0)
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1 2 34546 7 89101112 13 14

VA VA VW v

e G A e e
4 —fe—f

NOTE: Assume PIPES2-0 = 010, CONFIG1-0 = 01, ENRA = 1, ENRB = 1, SELMS/LS = X, OEY = 0,
OEC = OES = 0, RESET = HALT = 1, TP1-0 = 11

Figure 46. Double-Precision Floating Point Division
{PIPES2-PIPESO = 010, CLKMODE = 1)

1 2 3456782910 11 12 13 14

o _ [ IUUTaU L

| I

¢/ N\ N N\ \/\/7\/N/ I

ot (o YA et o ]
' |

I

16 ¥ led- 22 16 —je— y 22

NOTE: Assume PIPES2-0 = 000, CONFIG1-0 = 00, ENRA = 1, ENRB = 1, OEY = 0, OEC = OES = 0,

RESET = HALT = 1, TP1-0 = 11

Figure 47. Double-Precision Floating-Point Division, All Registers Enabled
(PIPES2-PIPESO = 000, CLKMODE = 1)
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1 2 34567891011121314 15 16 17

CLK
' 1
|
\/ \/ N/ N N\ N\ N/ \/ I
INST @ Q:Q’Q ’0’0’0’0’0’0"
169 || ' | 16-9 lel |
- 22 ] 22 |
v XXX UNDETERMINEDRSSKEKXR
3 e
NOTE: OEY

Assume PIPES2-0 = 110, CONFIG1-0 = 01, ENRA = 1, ENRB = 1, SELMS/LS = X, OEY = 0,

OEC = OES = 0, RESET HALT = 1, TP1-0 = 11. The result appears in the SREG.

Figure 48. Integer Division, Input Registers Enabled
(PIPES2-PIPESO = 110, CLKMODE = X)

1 2 3456 7 89 1011121314 15 16 17

| UIUEARURIU L

NOTE:

LY88LIVYLNS !
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Assume PIPES2-0 = 100, CONFIG1-O = 01, ENRA = 1, ENRB = 1, SELMS/LS = X, OEY = 0,
OEC = OES = 0, RESET = HALT = 1, TP1-0 = 11. The result appears in the SREG.

Figure 49. Integer Division, Input and Pipeline Registers Enabled
(PIPES2-PIPESO = 100, CLKMODE = X)



1 2 3456 78 910 111213 14 15 16 17

INST
16 -9 & 16— le|
- 22 - je— 22
| |
ADNAAND |
— 4

NOTE: Assume PIPES2-0 = 010, CONFIG1-0 = 01, ENRA = 1, ENRB = 1, SELMS/LS = X, OEY = 0,
OEC = OES = O, RESET = HALT = 1, TP1-0 = 11. The result appears in the SREG.

Figure 50. Integer Division, Input and Output Registers
Enabled (PIPES2-PIPESO = 010, CLKMODE = X)
1 2 3 4567 89 1011121314 15 16 17

SR 1

|
|
i

R InpETERMINED XX XXX e
16— M| 164 k|
-+ 22 224 h—:
|
— -4

NOTE: Assume PIPES2-0 = 000, CONFIG1-0 = 01, ENRA = 1, ENRB = 1, SELMS/LS = X, OEY = O,
OEC = OES = O, RESET = HALT = 1, TP1-0 = 11. The result appears in the SREG.

Figure 51. Integer Division, All Registers Enabled
{PIPES2-PIPESO = 000, CLKMODE = X)
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1 2 34561789 10 1

e« | JUNUUTA _

I !
| SQUARE | |
| ROOT ! !

NOTE: Assume PIPES2-0 = 110, CONFIG1-0 = 01, ENRA = 1, ENRB = 1, SELMS/LS = X, OEY = 0,
OEC = OES = O, RESET = HALT = 1, TP1-0 = 11

Figure 52. Single-Precision Floating Point Square Root, Input
Registers Enabled (PIPES2-PIPESO = 110, CLKMODE = X}

1 2 34561789 10 11

| LTI L

| |
| SQUARE |
| ROOT i

NOTE: Assume PIPES2-0 = 110, CONFIG1-0 = 01, ENRA = 1, ENRB = 1, SELMS/LS = X, OEY = O,
OEC = OES = 0, RESET = HALT = 1, TP1-0 = 11

Figure 563. Single-Precision Floating Point Square Root, Input and Pipeline
Registers Enabled (PIPES2-PIPESO = 100, CLKMODE = X)
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NOTE: Assume PIPES2-0 = 010, CONFIG1-0 = 01, ENRA = 1, SELMS/LS = X, OEY = O,
OEC = OES = 0, RESET = HALT = 1, TP1-0 = 11

Figure 54. Single-Precision Floating Point Square Root, Input and Output
Registers Enabled (PIPES2-PIPESO = 010, CLKMODE = X)

1 2 345617839 10 1

|
| SQUARE |
i ROOT 1

4 X N SQUARE
................... ROOT
a9 je—

NOTE: Assume PIPES2-0 = 000, CONFIG1-0 = 00, ENRA = 1, SELMS/LS = X, OEY = 0,
OEC = OES = 0O, RESET = HALT = 1, TP1-0 = 11

Figure 55. Single-Precision Floating Point Square Root, All Registers Enabled
(PIPES2-PIPESO = 000, CLKMODE = X)
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1 2 3456 7 8 9101112131415 16 17

NOTE: Assume PIPES2-0 = 110, CONFIG1-0 = 11, ENRA = 1, OEY = 0, OEC = OES = 0
RESET = HALT = 1, TP1-0 = 11

Figure 56. Double-Precision Floating Point Square Root, Input
Registers Enabled (PIPES2-PIPESO = 110, CLKMODE = 1)

1 2 345678 9101112131415 16 17

NOTE: Assume PIPES2-0 = 100, CONFIG1-0 = 01, ENRA = 1, OEY = 0, OEC = OES = 0,
RESET = HALT = 1, TP1-0 = 11

Figure 57. Double-Precision Floating Point Square Root, Input and Pipeline
Registers Enabled (PIPES2-PIPESO = 100, CLKMODE = 0)
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NOTE: Assume PIPES2-0 = 010, CONFIG1-0 = 10, ENRA = 1, OEY = 0, OEC = OES = 0,

RESET = HALT = 1, TP1-0 = 11

Figure 58. Double-Precision Floating Point Square Root, Input and Output
Registers Enabled (PIPES2-PIPESO = 010, CLKMODE = 1)

CLK

1 2 345678 91011121314 15 16
i
1

L]

w
I
o

SN74ACT8847 I

NOTE: Assume PIPES2-0 = 000, CONFIG1-0 = 00, ENRA = 1, OEY = 0, OEC = OE
RESET = HALT = 1, TP1-0 = 11

Figure 59. Double-Precision Floating Point Square Root, All
Registers Enabled (PIPES2-PIPESO = 000, CLKMODE = 0)
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1 2 345678 9101112131415161718 19 20

S g

IsQuaRe
| ROOT

NOTE: Assume PIPES2-0=110, CONFIG1-0=01, ENRA=1, SELM/LS=X, DEY=0,
EC=0ES=0, RESET=HALT=1 TP1-0=11. The result appears in the SREG.

Figure 60. Integer Square Root, Input Registers Enabled
(PIPES2-PIPESO = 110, CLKMODE = X)

" 23456789101112131415161718 19 20
| sQuare I
| ROOT |
INST \ﬁﬁlogréﬁﬁllﬁﬁ'mi.——
| XX XX X X ’.””’.@
165 16 5 le-|
> 22 » 22
Y
RIS RRKNOE TERINRED X Croor
— 3
NOTE: Assume PIPES2-0 = 100, CONFIG1-0 = 00, ENRA = 1, SELMS/LS = X, QEY = 0,

OEC = OES = 0, RESET = HALT = 1, TP1-0 = 11. The result appears in the SREG.

Figure 61. Integer Square Root, Input and Pipeline Registers Enabled
(PIPES2-PIPESO = 100, CLKMODE = X)
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1 23456 7 8 9101112131415161718

| sauare
| rOOT

19 20

CLK | |ll|||||||||||||||||||||||||||||||| | I
I
I

NOTE: Assume PIPES2-0 = 010, CONFIG1-0 = 01, ENRA = 1, SELMS/(S = X, OEY = O,
OEC = OES = 0, RESET = HALT = 1, TP1-0 = 11. The result appears in the SREG.

Figure 62. Integer Square Root, Input and Output Registers Enabled
(PIPES2-PIPESO = 010, CLKMODE = X)

1 2346678 91011121314151617 18 19 20
| sauARE |
| roOT |

NOTE: Assume PIPES2-0 = 000, CONFIG1-0 = 00, ENRA = 1, SELMS/LS = X, OEY = 0,

OEC = OES = 0O, RESET = HALT = 1, TP1-0 = 11. The result appears in the SREG.

Figure 63. Integer Square Root, All Registers Enabled
(PIPES2-PIPESO = 000, CLKMODE = X)
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Sample Chained Mode Microinstructions

The following chained mode timing diagram examples show four register settings,
ranging from fully flowthrough to fully pipelined.

XFIRST INSTRUCTION X SECOND INSTRUCTION X
T

1 ] 1
INSTRUCTION: FUNC(1?,0). RND(1,0), FAST :
) !

|
* FIRST OPERANDS X SECOND OPERANDS X

l .
DATA(31.0) A AND B INPUTS ' I

.........

.........

FIRST
RESULT A

' ......... ' b |
— 1 — — 1 —

OUT(31.,0), STATUS(18,0)

NOTE: Assume PIPES2-0 = . CONFIG1-0 = 01, ENRA = X, ENRB = X, SELMS/LS, OEY = 0,
OEC = OES = 0, RESET = HALT = 1, TP1-0 = 11

Figure 64. Single-Precision Chained Mode Operation, All Registers Disabled
(PIPES2-PIPESO = 111, CLKMODE = X)
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Load half Load Rest Load Half Load Rest Load Half Load Rest
of First of First of Second of Second of Third of Third
Operands Operands Operands Operands Operands Operands

! { { | ! !

- ]

CLK 1 : f :
! 1 | |
! 1 [ ]
FIRST INSTRUCTION X SECOND INSTRUCTION x THIRD INSTRUCTION x
i 7 ' il T Y ™
I‘—16—¢| I‘-ZZNI‘—H— 16 HI‘-16'N HZZ
INSTRUCTION FUNC(10.,0), RND(1 0), FAST | 22 |

1 i H :
< HALF REST HALF X REST HALF REST
1ST OPS x 1ST OPS x 2ND ops 2ND ops 3no ops ano OP x
| o
—17 —dle¥ — 17 —m—ﬂn— 17—+h——ﬂh—17—*——uh——*—ﬂ n-17-*—u-23
23 123 23 : 23 17

1
]

DATA(31.0) A AND B INPUTS
!

W FIRST m SECOND X
| }

OUT(31,01 STATUSI1B.0) Jeyf 2 —sl 2

NOTE: Assume PIPES2-0 = 110, CONFIG1-0 = 11, ENRA 1, ENRB = 1, SELMS/LS = X, OEY = 0,
OEC = OES = O, RESET = HALT = 1, TP1-0 =

Figure 65. Single-Precision Chained Mode Operation, Input Registers Enabled
(PIPES2-PIPESO = 110, CLKMODE = 1)
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Load First Operands Load Second Operands
Begin First Operation Begin Second Operation

CLK 9 —

............................

SECOND
INSTRUCTION

FIRST
INSTRUCTION

] ! 1
:‘_16 *:1'22*! "'—16 —e—>-22
!NSTRUFTION: FUNC(10,0). RND(1,0), FAST

..............
SECOND
OPERANDS

OPERANDS

............................

] t
- 17 it 23» — 17 —e—>t-23

DATA(31,0) A AND B INPUTS
|
M FIRST RESULT

| |
OUT(31,0) STATUS(18,0) le—4—»

NOTE: Assume PIPES2-0 = 010, CONFIG1-0 = 01, ENRA = 1, SELMS/LS = X, OEY = 0,
OEC = OES = 0, RESET = HALT = 1, TP1-0 = 11

Figure 66. Single-Precision Chained Mode Operation, Input and Output Registers
Enabled (PIPES2-PIPESO = 010, CLKMODE =~ X)
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Load Half
of Operands Load Pipeline

I 7

CLK !
| [}
|

( FIRST INSTRUCTION

! [

fe—— 16 > 22

INSTRUCTION: FUNCI(10.0}, RND(1,0}, FAST
|

l HALF REST
| 18T OPS 15T OPS

; ) -
— T — 23— 18—y

DATA{31,0) A AND B INPUTS I

-

|
SELMS/LS | |
|

|
OUT(31,0) STATUS(18.0) a3 ) 5 ——9

NOTE: Assume PIPES2-0 = 111, CONFIG1-0 = 11, ENRA = 1, ENRB = 1. OEY = 0, OEC = OES = 0,
RESET = HALT = 1, TP1-0 = 11

Figure 68. Double-Precision Chained Mode Operation, All Registers Disabled
(PIPES2-PIPESO = 111, CLKMODE = 0)
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Load Rest
of First
Operands
Load Half
of First Begin First
Operands Operation

|

Load Rest
of Second
Load Pipeline Operands
Load Half
of Second Begin Second
Operands Operation

Voo

CLK ' '
| 1
t ]
1 L
‘ FIRST INSTRUCTION f SECOND INSTRUCTION f
T ] T T (]
—— 16— le—i 22 le— 16 —»i f—a 22

]
INSTRUCTION: FUNC(10,0), RND{(1,0), FAST
1 t

It

H
HALF REST HALF REST
1ST OPS 1ST OPS 2ND OPS : 2ND OPS
T 1 T 1 L]
)

T T
M 17 —stedl le-17-sbe— 23—
23
DATA(31,0) A AND B INPUTS

T Y

] 1 ]
17 de—stenl le—vle— 17 —
23 17 23

SELMS/LS

OUT(31.0) STATUS(18,0}

e
3 5

NOTE: Assume PIPES2-0 = 110, CONFIG1-0 = 11, ENRA = 1, OEY = 0, OEC = OES = 0,

RESET = HALT = 1, TP1-0 = 11

|
1 (o
0 o .
s e

Figure 69. Double-Precision Chained Mode Operation, Input Registers Enabled
(PIPES2-PIPESO = 110, CLKMODE = 1)
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Load Rest

Load Rest of Second
oa ©! 0 d
of First Load Half perands
Operands of Second Begin Second
Load Half Operands Operation
of First Begin First
Operands Operation Load Pipeline  Load Output
‘ '
U : ‘l ——9 !
! | 1' l' '
LFIRST INSTRUCTION X SECOND INSTRUCTIONXTHIRD INSTRUCTION

| 1 d [l !
—t 16 =22 51 te-16 e 22
INSTRUCTION:  FUNC(10,0), RND(1.0), FAST |
' |

]

| | ! .

WALF 1 REsT X HALF x REST HALF —K REST
x 1ST OPS 1ST OPS 2ND OPS 2ND OPS 3RD OPS 3RD OPS
| It i 1 i t 1 1
=17 St 2351 lem17—pbe- 2301 M= 1 7 —pie- 23+ =17 23—
)

DATA(31,0) A AND B INPUTS
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SELMS/LS
"' '.
\l A A"' A A H
OUT(31,0) STATUS(18,0) l—a le—5 -l

NOTE: Assume PIPES2-0 = 010, CONFIG1-0 = 10, ENRA = 1, ENRB = 1, OEY = 0, OEC = OES = 0,

RESET = HALT = 1, TP1-0 = 11

Figure 70. Double-Precision Chained Mode Operation, Input and Output Registers
Enabled (PIPES2-PIPESO = 010, CLKMODE = 0)
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Instruction Timing

The following table details the number of clock cycles required to complete an operation
in different pipelined modes. For more detail, see the sample microinstructions shown
in the previous section.

Clock duration and output delay depend on the pipeline mode selected. See the note
in the table and timing parameters listed at the beginning of this document.

Table 31. Number of Clocks Required to Complete an Operation

PIPES2-0 PIPES2-0 PIPES2-0 PIPES2-0 PIPES2-0
OPERATION = 000 = 100 = 110 = 111 =010
{tpda) (tpd3) {tpd2) {tpd1) (tpda)

Single-Precision
Floating Point

ALU Operation

or Muttiply ¥ 3 2. ! 0 2
Divide 8 7 7 X 8
Square Root 11 10 10 X 11

Double-Precision
Floating Point

ALU Operationt 4 3 2 1 3
Multiply ¥ 5 4 3 2 4
Divide 14 13 13 X 14
Square Root 17 16 16 X 17
Integer
2 S 0 T T PR
Divide 16 15 15 X 16
tSquare Root 20 19 19 X 20

Y output and status valid following this t d delay after the designated number of clocks
Includes every conversion involving dougle-precision (DP «— SP or DP «— Integer)

Hincludes all chained mode operations

X = invalid

When using fast cycle times and double-precision operations, two cycles may be
required to output and capture both halves of a double-precision result. To insure the
result remains valid for two cycles, a NOP instruction may need to be inserted between
the operations. Table 32 shows the number of NOPs necessary to insert into the
instruction stream for fully pipelined operation (PIPES2-PIPESO = 000).
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Table 32. NOPs Inserted to Guarantee That Double-Precision Results Remain

Valid for Two Clock Cycles (PIPES2-PIPESO = 000)

1ST OPERATION

FOLLOWED BY
2ND OPERATION

# NOPs INSERTED
BETWEEN OPERATIONS

# CYCLES RESULT
IS VALID

DP — 32 BIT

32 BIT =~ DP

32 BIT OP

DP ALU

DP Muitiply

DP — 32 BIT
32 BIT —~ DP
32 BIT OP
DP ALU

DP Multiply
DP Sart

DP Divide

DP — 32 BIT
32 BIT = DP
32 BIT OP
DP ALU

DP Multiply
DP Sqrt

DP Divide

DP — 32 BIT
32 BIT - DP
32 BIT OP
DP ALU

DP Multiply
DP Sqrt

DP Divide

DP — 32 BIT
32 BIT —~ DP
32 BIT OP
DP ALU

DP Multiply
DP Sqrt

DP Divide

DP — 32 BIT
32 BIT -~ DP
32 BIT OP
DP ALU

DP Multiply
DP Sqrt

DP Divide

B e O N=2, 2 0O000=200 O0OO0OO0OO0O0O0 0O00O0O=00 OCOO0OOO0OO

NNRNOMRNNONRN DNRMNRNNRODRRNN DRDNMNNM=NDN NRNONRMNRNNOMRN DNMNNN=BDDN

NOTE: 32-bit operatién refers to a single-precision floating point or integ

er ALU operation or multiply, except

conversion to or from double-precision. This assumes the instruction following a double-precision divide

may begin loading on the 12th clock cycle, following a double-precision square root on the 15th cycle.

tThe device will not load a single-precision operation on the first clock edge following this operation, so any
single-precision instruction may be used. A NOP is recommended. The second instruction must be a NOP.
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Table 32. NOPs Inserted to Guarantee That Double-Precision Results Remain
Valid for Two Clock Cycles (PIPES2-PIPESO = 009) (Continued)

FOLLOWED BY # NOPs INSERTED # CYCLES RESULT
1ST OPERATION  ,\h) OPERATION  BETWEEN OPERATIONS IS VALID

DP SQRT DP = 32 BIT
32 BIT - DP
32 BIT OP
DP ALU
DP Multiply
DP Sqrt
DP Divide

DP Divide DP — 32 BIT
32 BIT =+ DP
32 BIT OP
DP ALU
DP Multiply
DP Sqrt
DP Divide

—+

—+

OO0O =M= OO0 =N=
NNPRONRNONNONNONN DNNMDMOMDNMNNONNRN

NOTE: 32-bit operation refers to a single-precision floating point or integer ALU operation or multiply, except
conversion to or from double-precision. This assumes the instruction following a double-precision divide
may begin loading on the 12th clock cycle, following a double-precision square root on the 15th cycle.

TThe device will not load a single-precision operation on the first clock edge following this operation, so any

single-precision instruction may be used. A NOP is recommended. The second instruction must be a NOP.

Exception and Status Handling
Exception and status flags for the 'ACT8847 were listed previously in Tables 14 and 15.

Output exception signals are provided to indicate both the source and type of the
exception. DENORM, INEX, OVER, UNDER, and RNDCO indicate the exception type,
and CHEX and SRCEX indicate the source of an exception. SRCEX indicates the source
of a result as selected by instruction bit 16, and SRCEX is active whenever a resuit
is output, not only when an exception is being signalled. The chained-mode exception
signal CHEX indicates that an exception has be generated by the source not selected

- for output by 16. The exception type signalled by CHEX caanot be read unless status
select controls SELST1-SELSTO are used to force status output from the deselected
source.

Output exceptions may be due either to a result in an illegal format or to a procedural
error. Results too large or too small to be represented in the selected precision are
signalled by OVER and UNDER. When INF is high, the output is the IEEE representation
of infinity. Any ALU output which has been increased in magnitude by rounding causes
INEX to be set high. DENORM is set when the muitiplier output is wrapped or the ALU
output is denormalized. DENORM is also set high when an illegal operation on an integer
is performed. Wrapped outputs from the multiplier may be inexact or increased in
magnitude by rounding, which may cause the INEX and RNDCO status signals to be
set high. A denormal output from the ALU (DENORM = 1) may also cause INEX to
be set, in which case UNDER is also signalled.

LY881IVYLNS
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Ordinarily, SELST1-SELSTO are set high so that status selection defaults to the output
source selected by instruction input 16. The ALU is selected as the output source when
16 is low, and the multiplier when 16 is high.

When the device operates in chained mode, it may be necessary to read the status
results not associated with the output source. As shown in Table 1 6, SELST1-SELSTO
can be used to read the status of either the ALU or the muitiplier regardless of the
16 setting.

Status results are registered only when the output (P and S) registers are enabled
(PIPES2 = 0). Otherwise, the status register is transparent. In either case, to read
the status outputs, the output enables (OES, OEC, or both) must be low.

Status flags are provided to signal both floating point and integer results. integer status
is provided using AEQB for zero, NEG for sign, and OVER for overflow/carryout.

Several status exceptions are generated by illegal data or instruction inputs to the FPU.
Input exceptions may cause the following signals to be set high: IVAL, DIVBYO, DENIN,
and STEX1-STEXO. If the IVAL flag is set, either an invalid operation such as the square
root of — |X|, has been requested or a NaN (Not a Number) has been input. When
DENIN is set, a denormalized number has been input to the multiplier. DIVBYO is set
when the divisor is zero. STEX1-STEXO indicate which port (RA, RB, or both) is the
source of the exception when either a denormal is input to the multiplier (DENIN = 1)
or a NaN (IVAL = 1) is input to the multiplier or the ALU.

NaN inputs are all treated as IEEE signalling NaNs, causing the IVAL flag to be set.
When output from the FPU, the fraction field from a NaN is set high (all 1s) and the
sign bit is O, regardless of the original fraction and sign fields of the input NaN.

When the ACT8847 outputs a NaN, it is always in the form of a signalling NaN along
with the IVAL (Invalid) and appropriate STEX flag set high {except for the MOVE A
instruction which passes any operand as is without setting exception flags).

Certain operations involving floating point zeros and infinities are invalid, causing the
'ACT8847 to set the IVAL flag and output a NaN. Operations involving zero and infinity
are detailed below.

A floating point zero is represented by an all zero exponent and fraction field. The sign
bit may be O or 1, to represent +0 OR —O respectively.

Zero divided by zero is an invalid operation. The result is a NaN with the IVAL and
DIVBYO flags set. Any other number divided by zero results in the appropriately signed
infinity with the DIVBYO flag set.
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For operations with floating point zeros: +0 multiplied by any number is the
appropriately signed O.

+0 + (-0) = +0
+0 + (+0) = +0
-0+ (-0 = -0
-0+ (+0) = +0
+0 - {-0) = +0
+0 - (+0) = +0
-0 - (-0 = +0

~0 - (+0) = -0

Floating point infinity is represented by an all 1 exponent field with an all O fraction
field. The sign bit determines positive or negative infinity (O or 1 respectively).

Infinity divided by infinity is an invalid operation, setting the IVAL flag and resulting
in a NaN output. Division of infinity by any other number resuits in the appropriately
signed infinity. Division of any number (except infinity or zero) by infinity results in
an appropriately signed zero. Infinity divided by zero results in the appropriately signed
infinity with the DIVBYO flag set.

For invalid operations with infinity listed below, the output is a signalling NaN with
the IVAL flag set.

+infinity multiplied by +0
zinfinity divided by +0
+infinity + (—infinity)
—infinity + (+infinity)
+infinity — (+infinity)
—infinity — (—infinity)

Any other number added to or multiplied by infinity results in the appropriately signed
infinity as output.

LY88LIVYLNS !
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'ACT8847 Reference Guide
Instruction Inputs

Operations are summarized in Tables 33 thru 41.

Table 33. Independent ALU Operations, Single Floating Point Operand

ALU OPERATION INSTRUCTION NOTES
ON A OPERAND INPUTS 110-10
Pass A operand 00x x01x 0000
Pass — A operand 00x x01x 0001
Convert from 2's 00x x010 0010
complement integer
to floating pointT
Convert from floating 00x x01x 0011 x = Don’t care
point to 2's complement 18 selects precision of A
integerT operand
Move A operand (pass 00x x01x 0100 0 = A (SP)
without NaN detect or 1 = A (DP)
status flags active) 17 selects precision of B
Pass B operand 00x x01x 0101 operand and must equal 18.
Convert from floating 00x x01x 0110 14 selects absolute value of
point to floating point a operand:
(adjusts precision of 0=A

input: SP - DP, DP —~ SP)#
Floating point to
unsigned integer

1 = |A]
During integer to floating

conversiont 00x x01x 0111 point conversion, |A| is not
allowed as a result.

Wrap denormal operand 00x x01x 1000

Unsigned integer to 00x x01x 1010

floating point

conversion

Unwrap exact number 00x x01x 1100

Unwrap inexact number 00x x01x 1101

Unwrap rounded input 00x x01x 1110

TDuring this operation, 18 selects the precision of the result. If the conversion involves double-precision, the
operation requires 2 cycles to load.
tF(equires 2 cycles to load the operation, even if input is SP.

SN74ACT8847 I
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Table 34. Independent ALU Operations, Two Floating Point Operands

ALU OPERATIONS
AND OPERANDS

INSTRUCTION
INPUTS 110-10

NOTES

Add A + B

Add |A| + B

Add A + |B|

Add [A| + {B]
Subtract A - B
Subtract |A| - B
Subtract A — |B|
Subtract |A| — |B|
Compare A, B
Compare |A| , B
Compare A, |B|
Compare |A[, |B|
Subtract B — A
Subtract B — |Aj}
Subtract [B] — A
Subtract [B] - |A|

00x x000 0x00
00x x001 0x00
00x x000 1x00
00x x001 1x00
00x x000 0x01
00x x001 0x01
00x x000 1x01
00x x001 1x01
00x x000 0x10
00x x001 0x10
00x x000 1x10
00x x001 1x10
00x x000 0x11
00x x001 Ox11
00x x000 1x11
00x x001 1x11

x = Don’t Care
I8 selects precision of A

operand:

0 = A (SP)

1 = A (DP}

17 selects precision of B
operand:

0 = B (SP)

1 =B (DP)

12 selects either Y or its
absolute value:

o=Y
1=1v]

Table 35. Independent ALU Operations,

One Integer Operand

ALU OPERATION
ON A OPERAND

INSTRUCTION
INPUTS 110-10

NOTES

Pass A operand

Pass B operand

Shift left logicalt
Shift right logicalt
Shift right arithmetict

010 xx10 0000

Pass - A operand (2's complement}t| 010 xx10 0001
Negate A operand {1's complement)

010 xx10 0010
010 xx10 0101
010 xx10 1000
010 xx10 1001
010 xx10 1101

x = Don’t Care

17 selects format of A or B
integer operand:

0 = Single-precision 2's
complement

1 = Single-precision unsigned
integer

18 must equal 17

i operand is number of bit positions A is to be shifted and m

Pass (~A) of unsigned integer takes 1's complement.
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Table 36. Independent ALU Operations, Two Integer Operands

ALU OPERATIONS
AND OPERANDS

INSTRUCTION
INPUTS 110-10

NOTES

Add A + B

Subtract A - B
Compare A, B
Subtract B - A
Logical AND A, B
Logical AND A, NOT B
Logical AND NOT A, B
Logical OR A, B
Logical XOR A, B

010 x000 0000
010 x000 0001
010 x000 0010
010 x000 0011
010 x000 1000
010 x000 1001
010 x000 1010
010 x000 1100
010 x000 1101

x = Don’t Care

17 selects format of A and B
operands:

0 = Single-precision 2’s
complement

1 = Single-precision unsigned
integer

Table 37. Independent Fioating Point Multiply Operations

MULTIPLIER OPERATION
AND OPERANDS

INSTRUCTION
INPUTS 110-10

NOTES

Multiply A * B
Multiply —(A ¥ B)
Multiply A * |B|
Multiply —(A % |B|)
Multiply |A| * B
Multiply —(|A] ¥ B}
Multiply |A| * |B]
Multiply —(|A| * |B})

00x x100 00xx
00x x100 01xx
00x x100 10xx
00x x100 11xx
00x x101 00xx
00x x101 O1xx
00x x101 10xx
00x x101 11xx

x = Don’t Care

I8 selects A operand
precision (0 = SP, 1
17 selects B operand
precision (0 = SP, 1 = DP}
11 selects A operand format
(0 = Normal, 1 = Wrapped)
10 selects B operand format
(O = Normal, 1 = Wrapped)

DP)

Table 38. Independent Floating Point Divide/Square Root Operations

MULTIPLIER OPERATION
AND OPERANDS'

INSTRUCTION
INPUTS (10-10

NOTES

Divide A / B
SQRT A
Divide |A[ /B
SQRT |A|

00x x110 Oxxx
00x x110 1xxx
00x x111 Oxxx
00x x111 1xxx

x = Don't Care

18 selects A operand precision
and 17 selects B operand
precision {0 = SP, 1 = DP)

12 negates multiplier result

{0 = Normal, 1 = Negated)

11 selects A operand format and
10 selects B operand format

(0 = Normal, 1 = Wrapped)

117 should be equal to I8 for square root operations
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Table 39. Independent integer Multiply/Divide/Square Root Operations

INSTRUCTION
INPUTS 110-10

MULTIPLIER OPERATION

NOTES
AND OPERANDSt

x = Don’t care

17 selects operand format:
0 = SP 2’s complement

1 = SP unsigned integer

010 x100 0000
010 x110 0000
010 x110 1000

Multiply A * B
Divide A/ B
SQRT A

TOperations involving absolute values, wrapped operands, or negated results are valid only when floating point
format is selected {19 = 0).

Table 40. Chained Multiplier/ALU Floating Point Operations#

0 and 2 simuitaneously.
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CHAINED OPERATIONS OUTPUT INSTRUCTION NOTES
MULTIPLIER ALU SOURCE INPUTS 110-10
A %8B A+B ALU 10x X000 xx00
A ¥ B A+ B Multiplier 10x x100 xx00
A % B A-B ALU 10x x000 xx01
A * B A-B Muiltiplier 10x x100 xx01
A ¥ B 2 - A ALU 10x x000 xx10 x = Don’t Care
A *B 2 - A Multiplier 10x x100 xx10 18 selects precision of
A %*B B-A ALU 10x x000 xx11 RA inputs:
A *B B-A Multiplier 10x x100 xx11 0 = RA (SP)
A % B A+0 ALU 10x x010 xx00 1 = RA (DP)
A ¥8B A+0 Multiplier 10x x110 xx00 I7 selects precision of
A *B 0-A ALU 10x x010 xx11 RB inputs:
A *B 0-A Multiplier 10x x110 xx11 O = RB (SP)
A %1 A+B ALU 10x X001 xx00 1 = RB (DP)
A %1 A+B Multiplier 10x x101 xx00 13 negates ALU result:
A %1 A-B ALU 10x x001 xx01 0 = Normal
A %1 A-B Muitiplier 10x x101 xx01 1 = Negated
A * 1 2-A ALU 10x x001 xx10 12 negates multiplier

A * 1 2-A Multiplier 10x x101 xx10 :)es_”“r\"ormal

(é) A ¥ 1 B-A ALU 10x x001 xx11 ! = Negated

~ A *1 B-A Multiplier 10x x101 xx11

H A * 1 A+0 ALU 10x x011 xx00

g A ¥ 1 A+0 Multiplier 10x x111 xx00

- A %1 0-A ALU 10x x011 xx11

x A *1 0-A Multiplier 10x x111 xx11

ﬁ The 110-10 setting Txx xx1x xx10 is invalid, since it attempts to force the B operand of the ALU to both




Table 41. Chained Multiplier/ALU Integer Operations

CHAINED OPERATIONS OUTPUT INSTRUCTION NOTES
MULTIPLIER ALU SOURCE INPUTS 110-10

A ¥ B A+ B ALU 110 x000 0000

A *B A+ B Multiptier 110 x100 0000

A *¥B A -8B ALU 110 x000 0001

A ¥ B A-B Multiplier 110 x100 0001

A *B 2-A ALU 110 x000 0010

A *B 2 -A Multiplier 110 x100 0010

A *B B-A ALU 110 x000 0011

A ¥ B B-A Multiplier 110 x100 0011

x = Don’t Care
A *B A+0 ALU 110 x010 0000
s 17 selects format of A

A ¥*B A+ 0 Multiptier 110 x110 0000 and B operands:

A ¥B 0-A ALU 110 x010 0011 0 =SP2's

A *B 0-A Multiplier 110 x110 0011 complement

A ¥ 1 A+ B ALU 110 x001 0000 1 = SP unsigned

A ¥ 1 A+ B Muttiplier 110 x101 0000 integer

A ¥1 A-B ALU 110 x001 0001

A ¥ 1 A-8B Multiplier 110 x101 0001

A ¥ 1 2-A ALU 110 x001 0010

A ¥ 1 2 - A Muiltiplier 110 x101 0010

A ¥ B - A ALU 110 x001 0011

A *1 B-A Multiplier 110 x101 0011

A ¥ 1 A+0 ALU 110 x011 0000

A ¥ 1 A+0 Multiplier 110 x111 0000

A *1 0-A ALU 110 x011 0011

A ¥*1 0-A Multiplier 110 x111 xx11
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Input Configuration

CONFIG1-CONFIGO control the order in which double-precision operands are loaded,
as shown in the Table 42.

Table 42. Double-Precision Input Data Configuration Modes

LY88LIOVYLNS !

LOADING SEQUENCE
DATA LOADED INTO TEMP DATA LOADED INTO RA/RB
REGISTER ON FIRST CLOCK REGISTERS ON SECOND
AND RA/RB REGISTERS ON cLOCK
SECOND cLOCK?
CONFIG1 CONFIGO DA DB DA DB
0 0 B operand B operand A operand A operand
{MSH) (LSH) (MSH) (LSH)
0 1t A operand B operand A operand B operand
(LSH) (LSH) (MSH) {(MSH)
1 0 A operand B operand A operand B operand
(MSH) {MSH) (LSH) (LSH)
1 1 A operand A operand B operand B operand
(MSH) (LSH}) (MSH) (LSH))

TOn the first active clock edge (see CLKMODE
On the next rising edge, operands in the tem

and RB registers.
*Use CONFIG1-0 = 01 as normal single-precision input configuration.

Operand Source Select

), data in this column is loaded into the temporary register.
porary register and the DA/DB buses are loaded into the RA

Muitiplier and ALU operands are selected by SELOP7-SELOPOQ as shown in Tables 43

and 44,

Table 43. Multiplier Input Selection

A1 (MUX1} INPUT B1 (MUX2) INPUT
SELOP7  SELOP6 | OPERAND SOURCE! | SELOP5 SELOP4 OPERAND SOURCE?
0 0 Reserved 0 0 Reserved
0 1 C register 0] 1 C register
1 [¢] ALU feedback 1 0 Multiplier feedback
1 1 RA input register 1 1 RB input register

T For division or square root operations, only RA and RB registers can be selected as sources.
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Table 44. ALV Input Selection

A2 (MUX3) INPUT B2 (MUX4) INPUT
SELOP3 SELOP2 | OPERAND SOURCE' | SELOP1 SELOPO | OPERAND SOURCET
(¢} (o] Reserved 0 0 Reserved
o] 1 C register 0 1 C register
1 0 Multiplier feedback 1 [¢] ALU feedback
1 1 RA input register 1 1 RB input register

tFor division or square root operations, only RA and RB registers can be selected as sources.

Pipeline Control

Pipelining levels are turned on by PIPES2-PIPESO as shown below.

Table 45. Pipeline Controls (PIPES2-PIPESO)

PIPES2-
PIPESO

REGISTER OPERATION SELECTED

- 0O X X X X
X X = 0O X X
X X X X = O

Enables input registers (RA, RB)

Makes input registers (RA, RB) transparent

Enables pipeline registers

Makes pipeline registers transparent

Enables output registers {PREG, SREG, Status)

Makes output registers (PREG, SREG, Status) transparent

Round Control

RND1-RNDO select the rounding mode as shown in Table 46.

Table 46. Rounding Modes

RND1-
RNDO ROUNDING MODE SELECTED
00 Round towards nearest
01 Round towards zero (truncate)
10 Round towards infinity (round up)
11 Round towards negative infinity (round down)
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Status Output Selection
SELST1-SELSTO choose the status output as shown below.

Table 47. Status Output Selection (Chained Mode)

SELST1-
SELSTO STATUS SELECTED
00 Logical OR of ALU and multiplier exceptions (bit by bit)
01 Selects multiplier status
10 Selects ALU status
11 Normal operation (selection based on result source specified by 16 input)

Test Pin Control

Testing is controlled by TP1-TPO as shown below.

Table 48. Test Pin Control Inputs

TP1-
TPO

OPERATION

-0 =0

All outputs and 1/Os are forced low

All outputs and I/Os are forced high

All outputs are placed in a high impedance state
Normal operation

LY88LIOVYLNS !
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Miscellaneous Control Inputs

The remaining control inputs are shown in the Table 49.

Table 49. Miscellaneous Control inputs

SIGNAL HIGH LOW
BYTEP Selects byte parity generation and test Selects single bit parity
generation and test
CLKMODE | Enables temporary input register load on Enables temporary input register
falling clock edge load on rising clock edge
ENRC No effect Enables C register load when
CLKC goes high.
ENRA If register is not in flowthrough, enables If register is not in flowthrough,
clocking of RA register through, holds contents of RA
register
ENRB If register is not in flowthrough, enables If register is not in flowthrough,
enables clocking of RB register holds contents of RB register
FAST Places device in FAST mode Places device in IEEE mode
FLOW_C Causes output value to bypass C No effect
register and appear on C register output
I bus.
HALT No effect Stalls device operation but
does not affect registers, internal
__ states, or status
OEC Disables compare pins Enables compare pins
%S_ Disables status outputs Enables status outputs
OEY Disables Y bus Enables Y bus
RESET No effect Clears internal states, status,
internal pipeline registers, and
exception disable register. Does
not affect other data registers.
SELMS/CS | Selects MSH of 64-bit result for output Selects LSH of 64-bit result for
output on the Y bus (no effect on single- | output on the Y bus (no effect on
precision operands) single-precision operands)
SRCC Selects multiplier result for input to C Selects ALU result for input to C
register register
Glossary

Biased exponent — The true exponent of a floating point number plus a constant called
the exponent field’s excess. In IEEE data format, the excess or bias is 127 for single-
precision numbers and 1023 for double-precision numbers.

Denormalized number (denorm) — A number with an exponent equal to zero and a
nonzero fraction field, with the implicit leading (leftmost) bit of the fraction field being O.
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NaN (not a number) — Data that has no mathematical value. The 'ACT8847 produces
a NaN whenever an invalid operation such as O * o is executed. The output format
for an NaN is an exponent field of all ones, a fraction field of all ones, and a zero sign
bit. Any number with an exponent of all ones and a nonzero fraction is treated as a

NaN on the input.

Normalized number — A number in which the exponent field is between 1 and 254
(single precision) or 1 and 2046 (double precision). The implicit leading bit is 1.

Wrapped number — A number created by normalizing a denormalized number’s fraction
field and subtracting from the exponent the number of shift positions required to do
so. The exponent is encoded as a two’'s complement negative number.

SN74ACT8847 Application Notes
Sum of Products and Product of Sums

Performing fully pipelined double-precision operations requires a detailed understanding
of timing constraints imposed by the mulitiplier. In particular, sum of products and
product of sums operations can be executed very quickly, mostly in chained mode,
assuming that timing relationships between the ALU and the multiplier are coded

properly.

Pseudocode tables for these sequences are provided, (Table 38 and Table 39) showing
how data and instructions are input in relation to the system clock. The overall patterns
of calculations for an extended sum of products and an extended product of sums
are presented. These examples assume FPU operation in CLKMODE 0, with the CONFIG
setting 10 to load operands by MSH and LSH, all registers enabled
(PIPES2 - PIPESO = 000), and the C register clock tied to the system clock.

In the sum of products timing table, the two initial products are generated in
independent multiplier mode. Several timing relationships should be noted in the table.
The first chained instruction loads and begins to execute following the sixth rising
edge of the clock, after the first product P1 has already been held in the P register
for one clock. For this reason, P1 is loaded into the C register so that P1 will be stable
for two clocks.

On the seventh clock, the ALU pipeline register loads with an unwanted sum, P1 + P1.
However, because the ALU timing is constrained by the multiplier, the S register will
not load until the rising edge of CLK9, when the ALU pipe contains the desired sum,
P1 + P2. The remaining sequence of chained operations then execute in the desired
manner.
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Matrix Operations

The 'ACT8847 floating point unit can also be used to perform matrix manipulations
involved in graphics processing or digital signal processing. The FPU multiplies and
adds data elements, executing sequences of microprogrammed calculations to form

new matrices.

Representation of Variables

In state representations of control systems, an n-th order linear differential equation
with constant coefficients can be represented as a sequence of n first-order linear
differential equations expressed in terms of state variables:

dx1 = x,, Xin-1) - x,

dt dt

For example, in vector-matrix form the equations of an nth-order system can be
represented as follows:

x1 at1 a2 .-... ain||x1 b11
ale| |+
dt B :

Xn an1 an2 e e ann Xn bn‘]

Or,x=ax+bu

Expanding the matrix equation for one state variable, dx1/dt, results in the following
expression:

5“:(311*x1+--'+a1n*xn)+(b11*U1+--.+b1n*un)

where X1 = dx1/dt.

Sequences of multiplications and additions are required when such state space
transformations are performed, and the 'ACT8847 has been designed to support such
sum-of-products operations. Ann X nmatrix A multipliedbyann x n matrix X yields
an n X n matrix C whose elements cij are given by this equation:

n

cij:E ajk * xgj fori=1,...,n i=1,....n (1)
k=1
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For the cij elements to be calculated by the "ACT8847, the corresponding elements

ajk and xij must be stored outside the 'ACT8847 and fed to the "ACT8847 in the
proper order required to effect a matrix multiplication such as the state space system

representation just discussed.

Sample Matrix Transformation

The matrix manipulations commonly performed in graphics systems can be regarded
as geometrical transformations of graphic objects. A matrix operation on another matrix
representing a graphic object may result in scaling, rotating, transforming, distorting,
or generating a perspective view of the image. By performing a matrix operation on
the position vectors which define the vertices of an image surface, the shape and
position of the surface can be manipulated.

The generalized 4 x 4 matrix for transforming a three-dimensional object with
homogeneous coordinates is shown below:

a b c¢c : d
e f g : h
T =1i j k 1
m n o : p

The matrix T can be partitioned into four component matrices, each of which produces
a specific effect on the resultant image:

3
3x3 X

1
1x3 1 x1

The 3 x 3 matrix produces linear transformation in the form of scaling, shearing and
rotation. The 1 x 3 row matrix produces translation, while the 3 x 1 column matrix
produces perspective transformation with multiple vanishing points. The final single
element 1 x 1 produces overall scaling. Overall operation of the transformation matrix
T on the position vectors of a graphic object produces a combination of shearing,
rotation, reflection, translation, perspective, and overall scaling.

The rotation of an object about an arbitrary axis in a three-dimensional space can be
carried out by first translating the object such that the desired axis of rotation passes
through the origin of the coordinate system, then rotating the object about the axis
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through the origin, and finally translating the rotated object such that the axis of rotation
resumes its initial position. If the axis of rotation passes through the point P = [abc 1],
then the transformation matrix is representable in this form:

xyzhl=Ixyz1[ 1 o 0 0 1. 0 0 O (2)
0 1 0 O o 1 0 O
0 0 1t 0 o 0 1 0
-a -b -c 1 a b ¢ 1
translation rotation translation
to origin about back to initial
origin position

where R may be expressed as:

n12 + (1-n)2 cos¢ n1n2(1-cos¢) +n3sing n1n3(1-cos¢) —n2sing O

R = |n1n2(1-cos¢) —n3sing n22 + (1-n2)2 cos¢ n2n3(1-cos¢p) +nising O

n1n3(1-cos¢) +n2sing n2n3(1-cos¢) —nl1sing n32 + (1-n3)2 cos¢ O
0 0 0 1
and nl = q1/(q12 + q22 + q32)1/2 = direction cosine for x-axis of
rotation
n2 = g2/(q12 + q22 +q32)1/2 = direction cosine for y-axis of rotation
n3 = g3/(q12 +q22 +q32)1/2 = direction cosine for z-axis of rotation

n = (n1 n2n3) unit vector for Q

Q = vector defining axis of rotation = [q1 q2 g3]

¢ = the rotation angle about Q

A general rotation using equation (2) is effected by determining the [x y z] coordinates
of a point A to be rotated on the object, the direction cosines of the axis of rotation
[n1, n2, n3], and the angle ¢ of rotation about the axis, all of which are needed to
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define matrix [R]. Suppose, for example, that a tetrahedron ABCD, represented by
the coordinate matrix below is to be rotated about an axis of rotation RX which passes
through a point P = [6 —6 3 1] and whose direction cosines are given by unit vector
[n1 = 0.866, n2 = 0.5, n3 = 0.707]. The angle of rotation O is 90 degrees (see
Figure 72). The rotation matrix [R] becomes

2 -3 31 A
1 -2 21— B
2 -1 21— C
2 -2 21— D

0.750 1.140 0.112 ©
-0.274 0.250 1.220 O
0

1

R=1 1112 _0s513 0500
) 0 0
1
Cr z
__ € ———- B!
|r By == |
(2)1 At |(1)

| 55°

1
1
; & X
i’ |
L_? - |
== i
R g | B D
z AR | I ¢ A
I |
L__(s)__._p o’ 3
B’ . 90°
A /_'P (5. -6, 3)

v’

(1) THIS ARROW DEPICTS THE FIRST TRANSLATION
(2) THIS AROW DEPICTS THE 90° ROTATION
(3) THIS ARROW DEPICTS THE BACK TRANSLATION

Figure 72. Sequence of Matrix Operations
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The point transformation equation (2) can be expanded to include all the vertices of
the tetrahedron as follows:

xa ya za bl
xb yb zb h2| _
xc yc zc h3|
xd yd zd h4
2-3 31 10 00| 0.750 1.140 0.112 0|1 00O
1-2 21 01 00/ |-0.274 0.2501.22 0|0 100
2-1 21 00 10| 1.112-0.513 0500010 010
2-2 21|-56-31 0 0 0O 1}|5-6 31
translation rotation about origin translation
to origin back to
initial
position

{3)

The 'ACT8847 floating point unit can perform matrix manipulation involving
multiplications and additions such as those represented by equation (1). The matrix
equation (3) can be solved by using the 'ACT8847 to compute, as a first step, the
product matrix of the coordinate matrix and the first translation matrix of the right-
hand side of equation (3) in that order. The second step involves postmultiplying the
rotation matrix by the product matrix. The third step implements the back-translation
by premultiplying the matrix result from the second step by the second translation
matrix of equation (3). Details of the procedure to produce a three-dimensional rotation
about an arbitrary axis are explained in the following steps:
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Step 1

Translate the tetrahedron so that the axis of rotation passes through the origin. This
process can be accomplished by multiplying the coordinate matrix by the translation
matrix as follows:

2 -3 3 1 1 0 0O O (2-5) (-3+6) (3-3) 1
1 -2 2 1 0 1 0 of [(1-85 (-2+6) (2-3) 1
2 -1 2 1 0 O 1 of ~ (2-5) (-1+6) (2-3) 1
2 -2 2 1 -5 6 -3 1 (2-5) (-2+6) (2-3) 1
translation vertices of transiated
to origin tetrahedron
-3 +3 01 AT
_ (-4 +4 -1 1|— BT
T -3 +5 -1 1}— cT
-3 +4 -1 1+—— DT

The "ACT8847 could compute the translated coordinates AT, BT, CT, DT as indicated
above. However, an alternative method resulting in a more compact solution is
presented below.

Step 2

Rotate the tetrahedron about the axis of rotation which passes through the origin after
the translation of Step 1. To implement the rotation of the tetrahedron, postmultiply
the rotation matrix [R] by the translated coordinate matrix from Step 1. The resultant
matrix represents the rotated coordinates of the tetrahedron about the origin as follows:

-33 01 0.750 1.140 0.112 0 -3.072 -2.670 3.324 1
-4 4 -1 1]-0.274 0.250 1.22 0© _ —-5.208 -3.047 3.932 1
-35 -11 1.112 -0.513 0.500 of ~ -4.732 -1.657 5.264 1
-34 -11 0 (0] 0 1 -4.458 -1.907 4.044 1
rotation about origin rotated coordinates
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Step 3

Translate the rotated tetrahedron back to the original coordinate space. This is done
by premultiplying the resultant matrix of Step 2 by the translation matrix. The following
calculations produces the final coordinate matrix of the transformed object:

—-3.072 -2.670 3.324 1 1 0 0 O 1.928 —8.670 6.324 1
—-5.208 -3.047 3.932 1 0o 1 0 O -0.208 -9.047 6.932 1
-4.732 —1.657 5.264 1 0o 0 1t O 0.268 —-7.657 8.264 1
—4.458 —1.907 4.044 1 5-6 3 1 0.542 —7.907 7.044 1

translate back

final rotated coordinates

A more compact solution to these transformation matrices is a product matrix that
combines the two translation matrices and the rotation matrix in the order shown in
equation (3). Equation (3} will then take the following form:

za hi1
zb h2
zc h3
zd h4

xa ya
xb yb
XC yc
xd yd

NN =N

-3
-2
-1
-2

NNDN®

—_ 2

0.750
-0.274
1.112
-3.730

1.140
0.250
-0.513
—-8.661

0.112
1.220
0.500
8.260

- O O O

transformation matrix
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The newly transformed coordinates resulting from the postmultiplication of the
transformation matrix by the coordinate matrix of the tetrahedron can be computed
using equation {1) which was cited previously:

n

cij =) aik * xij fori=1,...,n j=1,....,n (1)
k=1

For example, the coordinates may be computed as follows:

Xa = €11 = at1 * x11 + a12 * x21 + a13 * x31 + a14 * x41

2 ¥ 0.750 + (—3) * (-0.274) + 3 * 1,112 + 1 * (-3.73)
1.5 + 0.822 + 3.336 - 3.73

= 1.928

€12 = a11 * x12 + @12 ¥ x22 + @13 * x32 + a14 * x42

2 % 1.140 + {(-3) * 0.250 + 3 * (—0.513) + 1x(—8.661)
2.28 -0.75 — 1.539 - 8.661

= -8.67

ya

28 =C13 = a11 * x13 + a12 * x23 + a13 ¥ x33 + a14 * x43

2 % 0.112 + (-3) * 1.220 + 3 % 0.500 + 1 * 8.260
0.224 - 3.66 + 1.5 + 8.260

= 6.324

h1 =c14 = a11 * x14 + @12 * x24 + 213 * x34 + a14 * x44
= 2%0+(-3)*0+3%0+1#%1
0+0+0+1

=1
_ A’ = [1.928 - 8.67 6.324 1]

The other rotated vertices are computed in a similar manner:

B’ [-5.208 -3.047 3.932 1]
C [—4.732 -1.657 5.264 1)
D’ =[-4.458 —1.907 4.044 1]

Microinstructions for Sample Matrix Manipulation

The 'ACT8847 FPU can compute the coordinates for graphic objects over a broad
dynamic range. Also, the homogeneous scalar factors h1, h2, h3 and h4 may be made
unity due to the availability of large dynamic range. In the example presented below,
some of the calculations pertaining to vertex A’ are shown but the same approach
can be applied to any number of points and any vector space.
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The calculations below show the sequence of operations for generating two
coordinates, xa and ya, of the vertex A’ after rotation. The same sequence could be
continued to generate the remaining two coordinates for A’ (za and h1). The other
vertices of the tetrahedron, B, C’, and D’, can be calculated in a similar way.

Table 52 presents a pseudocode description of the operations, clock cycles, and register
contents for a single-precision matrix multiplication using the sum-of-products sequence
presented in an earlier section. Registers used include the RA and RB input registers
and the product (P) and sum (S) registers.

Table 52. Single-Precision Matrix Multiplication (PIPES2-PIPESO = 010)

CLOCK MULTIPLIER/ALU
CYCLE OPERATIONS PSEUDOCODE
1 Load a11, x11 a1l — RA, x11 —RB
SP Multiply pl = all ¥ x11
2 Load a12, x21 a12 »RA, x21 -RB
SP Multiply p2 = a12 ¥ x21
Pass Pto S p1 — P(p1)
3 Load a13, x31 a13 — RA, x31 —»RB
SP Multiply p3 = al13 ¥ x31, p2 ~P{p2)
AddPto S P(p1) + O = S(p1}
4 Load a14, x41 al4 - RA, x41 — RB
SP Multiply p4 = al4 ¥ x41, p3 —~ P(p3)
Add Pto S P(p2) + Sip1) = S(p1 + p2)
5 Load a11, x12 a1l - RA, x12 =~ RB
SP Multiply p5 = all * x12, p4 —~ P(p4)
Add Pto S P(p3) + Sip1 + p2) —~ S(p1 + p2 + p3)
6 Load a12, x22 a12 —~ RA, x22 = RB
SP Muitiply p6 = al12 * x22, p5 —~ P(p5)
Pass Pto S P(p4) + S(p1 + p2 + p3) —
Qutput S S{p1 + p2 + p3 + p4)
7 Load a13, x32 al13 +RA, x32— RB
SP Multiply p7 = a13 * x32, p6 — P(p6)
Add Pto S P(p5) + O = S(p5}
8 Load a14, x42 a14—RA, x42 —RB
SP Multiply p8 = al4 * x42, p7 = P(p7)
Add Pto S P(p6} + S{p5)— S(p5 + p6}
9 Next operands A—>RA,B—RB
Next instruction pi = A * B, p8 — P(p8)
AddPto S P(p7) + S{p5 + p6) = S(p5 + p6 + p7)
10 Next operands C—RA,D—RB
Next instruction pj = C ¥ D, pi = Pipi)
Output S P(p8) + S(p5 + p6 + p7) —
S{p5 + p6 + p7 + p8)

7-159

SN74ACT8847 I



LY88LIOVYLNS !

A microcode sequence to generate this matrix multiplication is shown in Table 53.

Table 53. Microinstructions for Sample Matrix Multiplication

I
10-0

000 0100 0000
100 0110 0000
100 0000 0000
100 0000 0000
100 0000 0000

100 0110 0000
100 0000 0000
100 0000 0000
100 0000 0000
100 0110 0000

ccc

LOOPP
KNN I
MFF PP
O Il EE
DGGSS
E 1-02-0

[eNeNeoNoNo

[eNeNeoNoNel

SS
EE
LL

00
PP
7-0

01 0101111 xxxx
01 0101111 xxxx
01 0101111 1010
01 0101111 1010
01 0101111 1010

01 0101111 xxxx
01 0101111 1010
01 0101111 1010
01 0101111 1010
01 0101111 xxxx

RR
NN
DD
1-0

00
00
00
00
00

00
00
00
00
00

[eNeNoNoNeol “~»>ron

— 3 wd md

[N eNeNeoNeo]
T N —"y

>XZm

DD Zm

— b d wd -
X X X X %X
X X X X X
X X X X X
X X X X X

— b ok el —)
X X X X X
X X X X X
X X X X %
X X X X X
xX X X X X

O0ODTW”W

~nZ&rmon

wr

< m Q|

O mQl

»w m Q|

X X X X X
X X X X X

vm 4 <

X X X X X%

“—»nrmow
—WwWr-rmgep

-
|
o

XX
XX
XX
XX
XX

XX
XX
XX
XX
XX

- mwvym 2|
- r > I

[ Y N T QY

— 2

1-0

11
1
11
11
11

11
11
11
11
11

Six cycles are required to complete calculation of xa, the first coordinate, and after
four more cycles the second coordinate ya is output. Each subsequent coordinate can
be calculated in four cycles so the 4-tuple for vertex A’ requires a total of 18 cycles

to complete.

Calculations for vertices B’, C’, and D’, can be executed in 48 cycles, 16 cycles for
each vertex. Processing time improves when the transformation matrix is reduced,
i.e., when the last column has the form shown below:

The h-scalars h1, h2, h3, and h4 are equal to 1. The number of clock cycles to generate
each 4-tuple can then be decreased from 16 to 13 cycles. Total number of clock cycles
to calculate all four vertices is reduced from 66 to 54 clocks. Figure 73 summarizes

the overall matrix transformation.
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Figure 73. Resultant Matrix Transformation

This microprogram can also be written to calculate sums of products with all pipeline
registers enabled so that the FPU can operate in its fastest mode. Because of timing
relationships, the C register is used in some steps to hold the intermediate sum of
products. Latency due to pipelining and chained data manipulation is 11 cycles for
calculation of the first coordinate, and four cycles each for the other three coordinates.

After calculation of the first vertex, 16 cycles are required to calculate the four
coordinates of each subsequent vertex. Table 54 presents the sequence of calculations
for the first two coordinates, xA and yA.

Products in Table 54 are numbered according to the clock cycle in which the operands
and instruction were loaded into the RA, RB, and | register, and execution of the
instruction began. Sums indicated in Table 54 are listed below:

s1 =pt +0 sb = pb + p7 s9 = p10 + p12

s2 = p1 + p3 s6 = p6 + p8 xA = pl + p2 + p3 + p4
s3 = p2 + p4 s7=p9 +0 yA = p5 + p6 + p7 + p8
s4 = p5 + 0 s8 = p9 + p11
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Table 54. Fully Pipelined Single-Precision Sum of Products (PIPES2-PIPESO = 000)

CLOCK | DA DB 1 RA RB | MUL | ALU P S C Y

CYCLE | BUS | BUS | BUS | REG | REG | REG | PIPE | PIPE | REG REG | REG| BUS
Mul | x11 ] a11
Mul | x21 | a12 | Mul | x11 all
Chn | x31 | a13 ] Mul | x21 al2 p1
Mul | x41 | a14 | Chn{ x31 | a13 p2 p1
Chn| x12 | al1 Mul | x41 al4 p3 s1 p2
Chn| x22 { a12 | Chn | x12 | a11| p4 T p3 | s1 p2
Chn | x32 | a13 | Chn | x22 | a12| p5 | s2 | pa t p2
Chn| x42 | al4 | Chn | x32 | a13 p6 s3 p5 s2 p2
Chn| x13 | a11|{ Chn | x42 | a14 p7 s4 p6 s3 s2
Chn| x23 | a12 | Chn | x13 | at11 p8 xA p7 s4 p6
Chn| x33 | a13| Chn | x23 | a12 p9 sb p8 XA p6 | xA
Chn| x43 | a14| Chn | x33 | a13| pio s6 pS s5 p6
Chn| x14 [ a11 | Chn | x43 | a14 p11 s7 p10 s6 s5
Chn{ x24 | a12| Chn | x14 | a11 p12 vA pt1 s7 p10
Chn | x34 | a13| Chn | x24 | a12 p13 s8 p12 YA p10| yA
15 Chn | x44 | a14 | Chn | x34 | a13| p14 s9 p13 s8 p10

PR IOC®INOO D WN 2O

TContents of this register are not valid during this cycle.

Chebyshev Routines for the SN74ACT8847 FPU
Introduction

Using the SN74ACT8847, very efficient routines can be developed for the
implementation of transcendental functions. A high degree of accuracy can be achieved
by taking advantage of the ‘ACT8847's ability to perform calculations using double-
precision floating point operands.

This application note describes how to use the ‘ACT8847 to implement seven different
transcendental functions. TIM (Texas Instruments Meta-Macro Assembler) assembly
files have been written for all seven functions and these files are available upon request
from Texas Instruments. The algorithm chosen to implement these functions is the
Chebyshev expansion method {1]. Table 55 lists the functions that have been
implemented, along with the number of cycles required, and time required to perform
the calculations. Also listed in the table is the cycle count and time required to perform
the same calculation using the Motorola MC68881 Floating Point Coprocessor and
the Intel 80387 Numeric Processor Extension.

The Chebyshev expansion method was chosen rather than some of the more well
known methods, such as the Taylor series and Newton-Raphson approximation, for
a variety of reasons. The primary advantage of Chebyshev’s method is that it provides
a uniform convergence rate in the number of terms required to achieve the desired
accuracy. Thus the range of the input value will have little effect on the accuracy of
the result. Another advantage is that the number of terms required to calculate the
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approximation is relatively
method can be applied to any function w
which contain the constants necessary

Lastly, tables are available
Chebyshev’s method.

In order that this applicatio
instructions and features common to al

implement the

Contact Texas Instruments VLSI Logic applications group at (214) 997-3

routines.

small. This provides for faster execution. Also, Chebyshev’s

hich is continuous and of bounded variation.

to implement

n note be useful to the largest audience, only those

copy of the seven TIM assembly files.

Table 55. Cycle Count and Execution Speed for the Seven Cheby

| YACT8847 versions have been used to

970 for a

shev Functions

EXECUTION SPEED?
t
FUNCTION CYCLE COUNT IN MICROSECONDS
"ACT8847 | MC68881 | 80387 | '‘ACT8847 mces8sst | 80387
. 122 to 7.32 to
Sine 51 416 271 1.63 25.0 46.3
. 123 to 7.38 to
Cosine 51 416 772 1.53 25.0 46.3
191 to 11.5 to
Tangent 84 498 497 2.52 29.9 29.8
ArcSine 68 606 Not 2.04 36.4 Not
Avail. Avail.
ArcCosine 68 650 Not 2.04 39.0 Not
Avail. Avail.
314 to 18.8 to
ArcTangent 104 428 487 3.12 25.7 29.2
. Not Not
Exponentiation 52 522 Avail. 1.56 31.3 Avail.

tFor MC68881 cycle count refer to ‘MC68881 Floating P
MC68881UM/AD, Page 6-13. For 80387 cycle count refer to ‘8038

Document No. 231917-001, Page E-36.
$'ACT8847 cycle speed is 30 ns, 33 MHz

MC68881 cycle speed is 60 ns, 16.6 MHz

80387 cycle speed is 40 ns, 25 MHz

Overview of Chebyshev’s Expansion Method

If f(x) is continuous and of bounded variation over the interval —1 = x

f(x) may be approximated by the following equation:

fix) =

1/2ag + a1T1(x) + a2T2(x) + ...

]

E arTrix)

r=0

oint Coprocessor User’s Manual’, Document No.
7 Programmer’s Reference Manual’,

< 1, then
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Note that the range for x is between —1 and 1. For most functions, this restriction
requires that the input, x, be range reduced before the calculation begins. Range
reducing an argument means to scale the argument down to a certain range. In the
case of Chebyshev approximations, the range is usually -1 = x < 1,0r0 < x = 1.

In the equation for f(x) above, the constants represented by ap, are known as Chebyshev
coefficients. The variables represented by T, are known as Chebyshev polynomials
and can be derived from the following relationship and values:

Tr+1(x) = 2xTpix) + Tr—1(x) = O,
Tolx) = 1,
T9(x) = x

To illustrate Chebyshev’s expansion method, the procedure to approximate function
t(x) using the first seven polynomials is now covered. Let

f(x) = 1/2ag +
a1T1(x)
asTo(x}
a3T3(x)
ag4T4(x)
agT5(x)
agTg(x)

+ 4+ + + +

Substituting in the expressions for the polynomials,

fix) = 1/2ap +
at(x) +
a2(2x2-1) +
a3(4x3-3x) +

ag(8x4-8x2+1) +
a5(16x5-20x3 + 5x) +
ag(32x6 - 48x4 +18x2 - 1)

Rearranging the expression, by grouping powers of x,

LY88L1IVYVLNS

fix) = x0(1/2ao — a2 + a4 — ag) +
xa1 — 3a3 + 6ag) +
x2(2ap — 8agq + 18ag) +
x3(4a3 — 20ag) +
x*8aq - 48ag) +
x5(16ag) +
x6(32ag)
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Next make the following substitutions:

Let

co= 1/2ag — a2 + a4 — ag
c1 = a1 — 3a3 + 5ag

cp = 2ap — 8a4 + 18ag

c3 = 4a3 — 20ag

cq4 = Bag — 48ag

cg = 16ap

ce = 32ap

Substituting the c’s into the last equation for f(x),

f(x) = cox0 +ex] + cax2 + cax3 +

cax4 + c5xd + cex

Applying Horner’s Rule yields,

f(x) = ({({lcgx + cB)x + c4lx +

c3)x + c2)x + c1)x + ¢Q

In the remainder of the paper, the above equation will be referred to as Cgeries:
Therefore,

Cseries_f(x) = (({{{cex + cEix + cqlx +

c3)x + c2)x + c1)x + €0

The last step prior to approximating f(x) is to calculate the c¢’s by substituting the values
for the Chebyshev coefficients into the equations for cg through cg.

Format for the Remainder of the Application Note

Each of the seven functions will be covered in a separate section. Each section will
include the following information:

1.

2.
3.

oo s

General steps required to perform the calculation including a description of
any preprocessing and/or postprocessing

An algorithm for each of the above steps

What system intervention, if any, is required; this intervention may take the
form of branching based on comparision status generated by the "ACT8847,
or storing and then later retrieving intermediate results

The number of 'ACT8847 cycles required to calculate f(x)

A listing of the c's

Pseudocode table showing how the calculation is accomplished. The
pseudocode tables list the contents of all the relevent ‘ACT8847 registers
and buses for each instruction.

Microcode table listing the instructions
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Cosine Routine Using Chebyshev’s Method
All floating point inputs and outputs are double precision. The input is in radians.
Steps Required to Perform the Calculation

STEP 1 — Preprocessing; range-reduce the input, X, to a range of [ - 1,1]. Next
square this range-reduced value, multiply it by 2.0, and finally subtract
1.0. X3 is the range-reduced input value, it must be stored externally.
‘TRUNC’ means to truncate.

X1« X*(2.0/pi)
X2« (4(TRUNC(0.25(X1 + 2.0D)}) -~ X1 + 1.0
If X2 > 1.0

Then X3 < 2.0 — X2

Else X3 <« X2

X4 < 2.0+(X3+X3) - 1.0

STEP 2 — Core Calculation; X4 in Step 1 will be referred to as 'x’ in the core
calculation.

X5 < Cseries_cos
< {({{{llcg*x + c7)*x + Cel*x + cp)*x +
C4)*x + c3)*x + c2)*x + cq)*x + co
STEP 3 — Postprocessing; multiply the butput of the core calculation times X3.

Cosine(X) <« X5+X3
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Algorithms for the Three Steps

Step 1 perform the preprocessing:

T1 < X=(2.0/pi)
T2 «<T1 + 2.0
T3 <«0.25+T2 and
T4 <1.0 — CREG
T5 <« INT(T3)
T6 <«4+TH
T7 < DOUBLE(T®6)
T8 <«T7 + CREG
CMP (1.0,T8)
1f (1.0 > T8)
Then T9 < 2.0 — CREG
Else T9 < CREG

T10 < CREG*CREG
T11«<T10 #2.0
T12<T11 - 1.0

Step 2 perform the core calculation:

T13 <cg*CREG

T14<T13 + ¢7
T15 < T14+CREG
T16 <T15 + cg
T17 «<T16+CREG
T18«T17 + c5
T19 < T18+CREG
T20«T19 + ¢4
T21 <T20+CREG
T22<T21 + ¢3
T23 < T22+CREG
T24+<T23 + c2
T25 < T24+«CREG
T26 <725 + cq

T27 <T26+CREG
T28<T27 + cp

Step 3 perform the postprocessing:

Cosine(X) <« T28+T9

2.0/pi entered as a constant

CREG < T1, T3 and T4 resulit
from a chained instruction
round controls set to truncate
CREG <~ T4

convert from integer to double

CREG < T8

T9 is X3 in Step 1, must
be stored externally
CREG =~ T9

T12 is X4 in Step 1, the
input to the core routine

CREG <~ T12
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Required System Intervention

As seen in the algorithm for Step 1, the ‘ACT8847 performs a compare. The results
of this compare determine which one of two calculations is to be performed. The
system, in which the 'ACT8847 is a part, must make the decision as to which of the
two calculations is to be performed. In addition, the system must store X3 and then
later furnish X3 as an input to the ‘ACT8847.

Number of "ACT8847 Cycles Required to Calculate Cosine(x)

Calculation of Cosine(x) requires 46 cycles. In addition, it is assumed that five additional
cycles are required due to the compare instruction, and resulting system intervention.
Therefore, the total number of cycles to perform the Cosine(x) calculation is 51.

Listing of the Chebyshev Constants (c's)
The constants are represented in |EEE double-precision floating point format.

cg = 3D19D46B7D4C8F32
c7 = BD962909C5CO1ED6
ce = 3EOD53517735F927
c5 = BE7CC930FDOADASD
c4q = 3EE3EOAF61F7677F
c3 = BF41E5FDEF25C403
c2 = 3F92A9FB40C119ED
¢1 = BFD23B03366AA0CY
co = 3FF4464BCC8CBA1F
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on

de Table for the Cosine(x) Calculat

Microco
Ali numbers are in hex. Any field with a length that is not a multiple of 4 is right justified and zero filled. For the microcode

table, the value of X has been chosen to be 1/2 pi.

7-172

PEECPCCS
B NNL

D
B

NARYEETEETEESE

LO E EANL N

DSCTLSLYSC

ABK PKNUL SLCO S

TCESTY

T

w
C

C EMF O ET

01CO 0000331000

1
1
1
1

1
1
1
1

F 3FF921FB 54442D18 F 0 0 _ 2 0 3 FF 1

F 3FE45F30 6DC9C883 F 1

01CO0 0000331000

2 03 FF 1

1

0180 0000331000

F 3FFO0000 00000000 F 0 0 _ 2 0 3 FB 1

0010331000
1000331000

2 03 FB 1 0180 0000331000
13 BD1 10 O 581

11

F 3FDOO0O00 00000000 F O 1 _[ 2

F 40000000 00000000 F

0 1A3
0 1A3

1
1

F 00000000 00000000 F 0 0 _ 2 O 3 FB 1

1000331000

10 0240 0000331000

F 00000000 00000000 F 0 0 _ 2 0 3 FB 1

BF 1
1 3 FB 1
1 3 F6 1
1 3 FE

F 00000000 00000004 F 0 1 _I 2 O 1
F 00000000 00000000 F 0 O . 2 O 3 FF 1

01A2 0000331000

1
1
1

1
1
1

F 00000000 00000000 F O O _ 2

0180 0000331000

F 00000000 00000000 F 0 O __ 2

0182 0000331000
10 0300 0000331000

1

F 00000000 00000000 F O 0 _ 2

01A0 0000331000

1
1

13 F7 1
1 3 5F 1

F 40000000 00000000 F 0 O I 2 O 3 EF 1

F 00000000 00000000 F 0 0 _ 2

01CO 0000331000
10 01C0 0000331000

1

F 00000000 00000000 F O 0 __ 2

01C0 0000331000

1
1
1
1

1
1

2 03 EF 1

o _
F 00000000 00000000 F 0 0 _ 2 0 3 FB 1

1

F 00000000 00000000 F

0180 0000331000

0180 0000331000

1
1

F BEFOOO00 00000000 F 0 1 _ 2 0 3 FB 1

01CO0 0000331000
10018 0000331000

1 3 BF 1

F 00000000 00000000 F 0 0 . 2 0 3 FB 1

F 3D19D46B 7D4C8F32 F 0 1 _ 2

0180 0000331000

1

1

F BD962909 CSCO1ED6 F 0 1 _ 2 0 3 FB 1



Microcode Table for the Cosine(x) Calculation (Continued)

0

0
NARYEEETEEE

RFSBSTSO

N

F

RH
LOE EANL

PEECUPCC S
B NNL

D
B

DSCTLSLYSC

ABK PKNUL SLCO S

TCESTY

T

w
C

C EMF O ET

DG

01CO 0000331000

1
1
1
1
1
1
1
1
1
1

1
1
1
1
1

1 3 9F 1

2

F 00000000 00000000 F O O __

2 03 B 1 0180 0000331000

F 00000000 00000000 F O O _

F 3EODb5351

0180 0000331000

2 03 FB 1

2

7735F927 F O 1 __

01CO 0000331000

13 9F 1

F 00000000 00000000 F O O _

2 03 FB 1 0180 0000331000

F 00000000 00000000 F O O __

0180 0000331000

1
1
1

2 03 FB 1

2

F BE7CC930 FDOADASD F O 1 _

01CO0 0000331000

13 9F 1

F 00000000 00000000 F O O __

0180 0000331000
0180 0000331000

2 03 FB 1

F 00000000 00000000 F O O _

1
1
1
1
1
1
1

2 03 FB 1

2

F 3EE3EOAF 61F7677F F O 1 _

01C0 0000331000

13 9F 1

F 00000000 00000000 F O O _

0180 0000331000

1
1
1

2 03 FB 1

F 00000000 00000000 F O O _

0180 0000331000

2 03 FB 1

2

F BF41ESFD EF25C403 F O 1 __

01CO0 0000331000

13 9F 1

F 00000000 00000000 F O O _

0180 0000331000

1
1
1
1
1
1
1

2 03 FB 1

F 00000000 00000000 F O O _

2 03 FB 1 0180 0000331000

2

F 3F92A9FB 40C119ED F O 1 _

01CO 0000331000

1
1
1

13 9F 1

F 00000000 00000000 F O O _

2 03 FB 1 0180 0000331000

F 00000000 00000000 F O O _

0180 0000331000

2 03 FB 1

2

F BFD23B03 366AA0CS F O 1 _

01CO 0000331000

1
1
1
1
1
1
1

1 3 9F 1

F 00000000 00000000 F O O _

0180 0000331000
0180 0000331000

2 03 FB 1

F 00000000 00000000 F O O _

1
1

2 03 FB 1

2

F 3FF4464B CC8CBA1F F O 1 _

01CO 0000331000

1 3 BF 1

F 00000000 00000000 F O 1 _

0180 0000331000

1
1
1

1

2 0 3 FF

F 00000000 00000000 F O O __

2 03 FF 1 0300 0000331000

F 00000000 00000000 F O O __

0300 0000330000

1

2 0 3 FF

F 00000000 00000000 F 0O O _
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Sine Routine Using Chebyshev’'s Method
All floating point inputs and outputs are double precision. The input is in radians.
Steps Required to Perform the Calculation

STEP 1 — Preprocessing; range reduce the input, X, to arange of [—1,1]. Next
square this range-reduced value, multiply it by 2.0, and finally subtract
1.0. X3is the range-reduced input value, it must be stored externally.
"TRUNC’ means to truncate.

X1 < X=(2.0/pi)
X2 < X1 — (4(TRUNC(0.25(X1 + 1.0M)))
If X2 > 1.0

Then X3 <« 2.0 — X2

Else X3 « X2

X4 < 2.0+(X3+X3) - 1.0

STEP 2 — Core calculation; X4 in Step 1 will be referred to as 'x’ in the core
calculation.

X5 < Cseries_sin

< ({{{{{lcg**x + c7)*x + c@gl*x + CBI*X +
c4)*x + €3)*x + c2)*x + c1)*x + ¢Q

STEP 3 — Postprocessing; multiply the output of the core caiculation times X3.
Sine(X) « X5+X3
Algorithms for the Three Steps

Step 1 perform the preprocessing:

T1 < X+(2.0/pi) 2.0/pi entered as a constant
T2 «<T1 + 1.0
T3 <«<0.25+T2 CREG « T1
T4 <« INT(T3) round controls set to truncate
T6 <+« 4x+T4
T6 < DOUBLE(T5) convert from integer to double
T7 < CREG - T6
CMP (1.0,T7) compare 1.0 to T7
If (1.0 > T7) CREG « T7

Then T8 < 2.0 — CREG T8 is X3 in Step 1, must

Else T8 < CREG be stored externally

CREG — T8

T9 < CREG+*CREG
T10<T9 2.0
T11<T10 — 1.0 T11 is X4 in Step 1 above, the input to

the core routine
T11 = ‘x’ from Step 2 above
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Step 2 perform the core calculation:

T12 «<c8+CREG CREG < T11
T13«<T12 + ¢7
T14 <T13+CREG
T15«T14 + cg
T16 < T15*CREG
T17 <T16 + ¢5
T18 <« T17+CREG
T19<«<T18 + c4
T20 <T19+CREG
T21+<T20 + ¢3
T22 <T21+CREG
T23«T22 + ¢2
T24 < T23+CREG
T25<T24 + ct
T26 < T25*CREG
T27+<T286 < ¢cQ

Step 3 perform the postprocessing:
Sine(X) < T27+T8
Required System Intervention

As seen in the algorithm for Step 1, the ‘ACT8847 performs a compare. The results
of this compare determine which one of two calculations is to be performed. The
system, in which the 'ACT8847 is a part, must make the decision between which
two calculations are to be performed. In addition, the system must store X3 and then
later furnish X3 as an input to the 'ACT8847.

Number of ‘ACT8847 Cycles Required to Calculate Sine(x)

Calculation of Sine(x) requires 46 cycles. In addition, it is assumed that five additional
cycles are required due to the compare instruction and resulting system intervention.
Therefore, the total number of cycles to perform the Sine(x) calculation is 51.

Listing of the Chebyshev Constants (c’s)
The constants are represented in IEEE double-precision floating point format.

cg = 3D19D46B7D4C8F32
¢7 = BD962909C5CO1ED6
cg = 3EOD53517735F927
cs = BE7CC930FDOADASD
cq = 3EE3EOAF61F7677F
c3 = BF41E5FDEF25C403
c2 = 3F92A9FB40C119ED
cq1 = BFD23B03366AA0C9
cp = 3FF4464BCC8CBA1F
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Microcode Table for the Sine(x) Calculation

All numbers are in hex. Any field with a length that is not a multiple of 4 is right justified and zero filled. For the microcode

table, the value of X has been chosen to be 1/2 pi.

00

NARYEETETETESTE

RFSBSTSO

N

F

A

R
LOE EANL

PEECPCC S
B NNL

D
B

DSCTLSLYSC

ABKPKNUL SLCO S

TCESTY

T

w
Cc

CEMFOET

D
2 03 FF 1

01CO 0000331000

1
1
1
1

1
1
1
1

F 3FF921FB 54442D18 F 0 O

01C0 0000331000

2 03 FF 1

F 3FE45F30 6DCSC883 F 1 1

0180 0000331000

2 03 FB 1

F 00000000 00000000 F O O

0180 0000331000
10 01C0 0010331000

2 03 FB 1

F 3FFOO000 00000000 F O 1

1 3 BF 1
2 03 FB 1

F 3FDOOO0OO 00000000 F O 1 1 2

0O1A3 1000331000
0 1A3

1
1
1

F 3FFOO000 00000000 F O O __

1000331000

0240 0000331000

2 03 FB 1

2
2
2
2

F 00000000 00000000 F 1 O

BF 1 1

1

0

F 00000000 00000004 F O 1 __

01A2 0000331000

1
1
1

1
1
1

1 3 FB 1
1 3 F6 1
1 3 FE 1

F 00000000 00000000 F O O __

0000331000
0182 0000331000

10 0300 0000331000

0 181

F 00000000 00000000 F O O __

F 00000000 00000000 F O O

1

13 F7 1
1 3 5F 1

F 00000000 00000000 F O O 4 2 0O 3 FF

F 00000000 00000000 F O O

01A0 0000331000

1
1

1
1

2
2

F 40000000 00000000 F O O 2 0O 3 EF 1

F 00000000 00000000 F 1 O

01C0 0000331000
10 01CO 0000331000

F 00000000 00000000 F O O __

01C0O 0000331000

1
1

1
1

2 03 EF 1

0180 0000331000

2 03 FB 1

F 00000000 00000000 F 0 O

0180 0000331000

1
1

1
1

2 03 FB 1

F BFFOOO00 00000000 F O 1

01CO 0000331000
10 0180 0000331000
0180 0000331000

t 3 BF 1
1

2

F 3D19D46B 7D4C8F32 F O 1

1

2 03 FB 1

F 00000000 00000000 F 0 O T 2 03 FB 1

F BD962909 C5CO1ED6 F O 1 __
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Microcode Table for the Sine(x) Calculation (Continued)

~
'

[s}e}

NARYEETETETEFTE

RFSBSTSO

N

F
ABK PKNUL SLCO s

R H

P EECUPCC S
B NNL

D
B

-
[o2]
(o]

E AN L

LO E

DSCTLSLYSC

TCESTY

T

w
C

C EMFOET

01CO0 0000331000

1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1

13 9F 1

2

F 00000000 00000000 F O O

0180 0000331000

2 03 FB 1

F 00000000 00000000 F 0O O

F 3EOD5351

0180 0000331000

2 03 FB 1
2

7735F927 F 0O 1

01CO 0000331000

13 9F 1

F 00000000 00000000 F O O

0180 0000331000

2 03 FB 1

F 00000000 00000000 F O O

0180 0000331000

2 03 FB 1
2

F BE7CC930 FDOADA9D F O 1

01C0 0000331000

1 3 9F 1

F 00000000 00000000 F O O

0180 0000331000

2 03 FB 1
2 03 FB

2

F 00000000 00000000 F O O

0180 0000331000
01CO 0000331000

1

F 3EE3EOAF 61F7677F F O 1

1 3 9F 1

F 00000000 00000000 F O O

0180 0000331000

1
1
1
1
1

2 03 FB 1

F 00000000 00000000 F O O

0180 0000331000

1
1
1
1
1
1
1

2 03 FB 1
2

F BF41ES5FD EF25C403 F O 1

01CO0 0000331000

1 3 9F 1

F 00000000 00000000 F O O

0180 0000331000

2 03 FB 1

F 00000000 (00000000 F O O

0180 0000331000

2 03 FB 1
2

F 3F92A9FB 40C119ED F O 1

01CO0 0000331000

1
1

1 3 9F 1

F 00000000 00000000 F O O

0180 0000331000

2 03 FB 1

F 00000000 00000000 F O O

0180 0000331000

1
1
1
1
1
1
1
1

2 03 FB 1

2

F BFD23B03 366AA0C9 F O 1

01C0 000033 1000O0

1
1
1
1
1
1
1

13 9F 1

F 00000000 00000000 F O O

0180 0000331000

2 03 FB 1

F 00000000 00000000 F O O

01860 0000331000

2 03 FB 1
2

F 3FF4464B CC8CBA1F F 0 1

01CO 0000331000

1 3 BF 1

F 3FFOO000 (00000000 F 0O 1

0180 0000331000

1
1
1

2 0 3 FF
2 0 3 FF
2 0 3 FF

F 00000000 00000000 F O O

0300 0000331000

F 00000000 00000000 F O O __

0300 0000330000

F 00000000 00000000 F O O



Tangent Routine Using Chebyshev’'s Method

All floating point inputs and outputs are double precision. The input is in radians.
Steps Required to Perform the Calculation

STEP 1 — Preprocessing; range reduce the input, X, to arange of [— 1,1]. Next
square this range-reduced value, multiply it by 2.0, and finally subtract
1.0. X3is the range-reduced input value, it must be stored externally.
"TRUNC’ means to truncate. If X2 > 1.0, then in the postprocessing
part of the routine, the answer is the reciprocal of X5+X3.

X1 < X+(4.0/pi)
X2 < X1 — (4{TRUNC{0.25(X1 + 1.0)}))}
If X2 > 1.0

Then X3 < 2.0 — X2

Else X3 < X2

X4« 2.0+(X3*X3) - 1.0

STEP 2 — Core Calculation; X4 in Step 1 will be referred to as 'x’ in the core
calculation.

X5 « Cgeries_tan

<« (((Ulc14)*x + c13)*x + c12)*x + c11)*x + ¢c10Q)*x +
cg)*x + cgl*x + c7l*x + Ccgl*x + CB)*x + cq4}*x + c3)*x +
c2)*x + c1l*x + cQ

STEP 3 — Postprocessing; multiply the output of the core calculation times
X3. If X2 > 1.0, then the reciprocal of X5+X3 is the answer, if
X2 < 1.0 then X5+X3 is the answer.

Tangent(X) < X5#X3 (or reciprocal of X5x+X3)

Algorithms for the Three Steps

Step 1 perform the preprocessing:
T1 «X+(4.0/pi) 4.0/pi entered as a constant
T2 «<T1 + 1.0 ~
T3 «0.25+T2 CREG « T1 S
T4 <«INT(T3) round controls set to truncate 0
TS5 «4xT4 -
T6 < DOUBLE(TS5) convert from integer to double 2
T7 < CREG < T6 <
CMP (1.0,T7) E
If (1.0 > T7) CREG « T7 n
Then T8 < 2.0 — CREG T8 is X3 in Step 1, must
Else T8 < CREG be stored externally
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T9 < CREG+CREG - CREG < T8

T10«<T9+2.0

T11«<T10 - 1.0 T11 is X4 in Step 1, the
input to the core routine

Step 2 perform the core calculation:

T12+<c14+CREG
T13«<T12 + c13 CREG < T11
T14 < T13«CREG
T15«<T14 + ¢12
T16 <« T15+CREG
T17<T16 + c11
T18 <« T17+CREG
T19«T18 + c10
T20 < T19+CREG
T21<T20 + cg
T22 < T21+CREG
T23«<T22 + cg
T24 < T23+CREG
T25«T24 + c7y
T26 < T25+«CREG
T27 <T26 + cg
T28 < T27+CREG
T29<T28 + c5
T30 < T29+CREG
T31«<T30 + c4
T32 «<T31+«CREG
T33+<T32 + c3
T34 < T33+CREG
T35«<T34 + c2
T36 < T35+CREG
T37 «<T36 + ct
T38 < T37+CREG
T39+«T38 + ¢co

Step 3 perform the postprocessing:

T40 «<T39+T8

If X2 (in Step 1) > 1.0
Then Tangent(X) < 1.0/T40
Else Tangent(X) < T40
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Required System Intervention

As seen in the algorithm for Step 1, the ‘ACT8847 performs a compare. The results
of this compare determine which one of two calculations is to be performed. The
system, in which the ‘ACT8847 is a part, must make the decision as to which of the
two calculations is to be performed. In addition, the system must store X3 and then
later furnish X3 as an input to the 'ACT8847. Finally, the system will have to determine
if it is necessary to take the reciprocal of the final product (T40 in the Algorithm for
Step 3) to yield the answer. If it is necessary to take the reciprocal, then the system
will be required to direct the variable T40 from the ‘ACT8847’s output bus to the input
buses. This is because operands for division instructions must be provided by the RA
and RB registers; feedback is not an option.

Number of 'ACT8847 Cycles Required to Calculate Tangent(x)

Calculation of Tangent(x) requires 79 cycles. In addition, it is assumed that five
additional cycles are required for system intervention due to the compare instruction.
Therefore, the total number of cycles required to perform the Tangent(x} calculation
is 84.

Listing of the Chebyshev Constants (c’s)
The constants are represented in IEEE double-precision floating point format.

c14 = 3D747D842210CC35
c13 = 3DA1D66636043991
c12 = 3DCCDO78F52B3A73
c11 = 3DF938FICDDFF864
c10 = 3E2620430E99B5B7
co = 3E535C2C953CE515
cg = 3EBOFO7AFCO99D7F
c7 = 3EADA4D789EB45C4
cg = 3EDIFO3D4CE1AT71
cg = 3FO6B236DE4D014C
ca = 3F33DBFBO1B3F415
c3 = 3F6160DE701F3A53
co = 3FBE70A18736FC10
c1 = 3FBAEA2653199611
co = 3FEC14B2675B10BA
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Microcode Table for the Tangent(x) Calculation

~

-
o]
o]

All numbers are in hex. Any field with a length that is not a multiple of 4 is right justified and zero filled. For the microcode

table, the value of X has been chosen to be 1/3 pi.

O w
O w
O w

RFSBST
NARYEE

F 1
N

RHE
E EANL
ABK PKNL SLCO s

0

PEECPCC S
I L

B NNL

D
B

DSCTLSLYSC

TCESTY

T

w
C

C EMFOET

DG
2 03 FF 1

01C0 0000331000

1
1

1
1

F 3FFOC152 382D7365 F 0 O
F 3FF45F30 6DC9C883 F

01CO0 0000331000

2 03 FF 1

1

1

0180 0000331000

1
1

1
1

2 03 FB 1

F 00000000 00000000 F O O

0180 0000331000
10 01CO 0010331000

2 03 FB 1

F 3FFO0O000 00000000 F O 1

1 3 BF 1
2 03 FB 1

F 3FDOOOOCO 00000000 F O 1 & 2
F 3FFOO000 00000000 F O O

1000331000

0 1A3
0 1A3

1
1

1
1
1
1
1
1

1000331000

0240 0000331000

2 03 FB 1

F 00000000 00000000 F 1 O

1
1
1

01 BF 1
13 FB 1
1 3 F6 1
1 3 FE

2
2
2
2

F 00000000 00000004 F O 1

01A2 0000331000

F 00000000 00000000 F O O

0000331000
0182 0000331000

10 0300 0000331000

0 181

F 00000000 00000000 F 0 O

1

1
1

F 00000000 00000000 F O O

F 00000000 00000000 F O O J 2 O 3 FF

F 40000000 00000000 F O 1

0183 0000331000
01C0 0000331000
10 01C0 0000331000

1
1

1
1

13 F7 1
1 3 5F 1

2
2

F 00000000 00000000 F O O

1
1

F 40000000 00000000 F O O I 2 O 3 EF

01CO0 0000331000

1
1
1

1
1
1
1

2 0 3 FEF

o _

1

F 00000000 00000000 F

0180 0000331000

2 03 FB 1

F 00000000 00000000 F O O

018 0000331000

2 03 FB 1

F BFFOO000 00000000 F O 1

1 3 BF 1 1 01CO 0000331000
10 0180 0000331000

2

F 3D747D84 2210CC35 F O 1

F 00000000 00000000 F O OJ 2 0 3 FB 1

0180 0000331000

2 03 FB 1 1

F 01

F 3DA1D666 36043991



Microcode Table for the Tangent(x) Calculation (Continued)

RFSBSTSO

N

F

H

R
LOE EAN L

PEECPCC S
B NNL

D
B

NARYEETETETESTE

bDsCTLSLYSC

S
T

0]
w

c

ABK P KN L S L

TCESTY

C EMF O ET

01CO 0000331000

1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1

13 9F 1

2

F 00000000 00000000 F O O

0180 0000331000

2 03 FB 1

F 00000000 00000000 F O O

0180 0000331000

2 03 FB 1
2

F 3DCCDO78 F52B3A73 F 0 1

01CO 0000331000

13 9F 1

F 00000000 00000000 F 0 O

0180 0000331000

2 03 FB 1

F 00000000 00000000 F O O

0180 0000331000

2 03 FB 1
2

F 3DF938F9 CDDFF864 F O 1

01CO0 0000331000

1 3 9F 1

F 00000000 00000000 F O O

0180 0000331000
0180 0000331000

2 03 FB 1

F 00000000 00000000 F O O

1
1
1
1
1
1
1

2 03 FB 1
2

F 3E262043 OE99B5B7 F O 1

01C0 0000331000

13 9F 1

F 00000000 00000000 F O O

0180 0000331000

2 03 FB 1

F 00000000 00000000 F O O

0180 0000331000

2 03 FB 1
2

F 3E535C2C 953CE515 F O 1

01CO 0000331000

1
1
1
1
1

13 9F 1

F 00000000 00000000 F O O

0180 0000331000

2 03 FB 1

F 00000000 00000000 F O O

0180 0000331000
01CO 0000331000

2 03 FB 1
2

F 3EBOFO7A FCO99D7F F 0 1

1
1
1
1
1
1
1
1
1

13 9F 1

F 00000000 00000000 F O O

0180 0000331000

2 03 FB 1

F 00000000 00000000 F O O

0180 0000331000

1
1
1
1
1
1
1

2 03 FB 1

F 3EADA4D7 89EB45C4 F 0 1

01C0 0000331000

2 13 9F 1
2 03 FB 1

F 00000000 00000000 F O O

0180 0000331000
0180 0000331000

F 00000000 00000000 F O O

2 03 FB 1
2

F 01

F 00000000 00000000 F O O

F 3ED9FO3D 4C51A771

01CO O000331000

1 3 9F 1

0180 0000331000
0180 0000331000

2 03 FB 1
2 03 FB 1

~

F 00000000 00000000 F O O
. F 3FO6B236 DE4D014C F 0O 1

-
o]
[{e]

~N
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Microcode Table for the Tangent(x) Calculation {Continued)

0

o
NARYEETEEEE

RFSBSTSO

F

RHE

PEECPCC S
B NNL LOE EANL N

D
B

T‘
-
[{<]
o

DSCTLSLYSC

ABK PKNUL SLCO s

TCESTY

T

PT

01C0 0000331000

1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1

2 13 9F 1
2 03 FB 1

F 00000000 00000000 F O O

0180 0000331000
0180 0000331000
01CO 0000331000

F 00000000 00000000 F O O

2 03 FB 1

F 3F33DBFB 01B3F415 F 0O 1

2 13 9F 1
2 03 FB 1

F 00000000 00000000 F O O

0180 0000331000

F 00000000 00000000 F 0 O

018 0000331000

2 03 FB 1
2

F 3F6160DE 701F3A53 F 0 1

01CO 0 000331000

1
1
1
1
1
1
1
1
1
1
1
1
1
1

13 9F 1

F 00000000 00000000 F O O

0180 0000331000

2 03 FB 1

F 00000000 00000000 F O O

F 3F8E70A1

0180 0000331000

2 03 FB 1

8736FC10 F O 1

01CO 0000331000

2 13 9F 1
2 03 FB 1

F 00000000 00000000 F 0 O

0180 0000331000

F 00000000 00000000 F O O

F 3FBAEA26 53199611

0180 0000331000

2 03 FB 1
2

F 01

01C0 0000331000

13 9F 1

F 00000000 00000000 F 0 O

0180 0000331000

2 03 FB 1

F 00000000 00000000 F O O

0180 0000331000
01CO 0000331000

1
1
1
1
1
1
1
1
1
1

2 03 FB 1
2

F 3FEC14B2 675B10BA F O 1

1 3 BF 1

F 3FE55555 55555555 F O 1

0180 0000331000

1
1
1
1

2 0 3 FF
2 0 3 FF
2 0 3 FF
2 0 3 FF
2 0 3 FF
2 0 3 FF
2 0 3 FF

F 00000000 00000000 F 0 O

0300 0000331000

F 00000000 00000000 F O O

010 00003306000
O1E0 0000331000
0300 0000331000

F 3FFOO000 00000000 F O O

F 3FE279A7 4590331D F

1

1

1
1
1
1

1
1
1

2 03 FF 1

F 00000000 00000000 F O O

0300 0000331000

F 00000000 00000000 F O O

0300 0000331000

F 00000000 00000000 F O O

0300 0000331000

F 00000000 00000000 F O O



Microcode Table for the Tangent(x) Calculation (Concluded)

0

0
NARYEETEETEE

RFSBSTSO

RHEF
LOE EANTL N

PEECUPCC S
B NNL

D
B

DSCTLSLYSC

ABK PKNUL SLCO S

TCESTY

T

w
Cc

C EMFOET

0300 0000331000

1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1

2 03 FF 1

F 00000000 00000000 F O O __

2 03 FF 1 0300 0000331000

F 00000000 00000000 F O O _

2 03 FF 1 0300 0000331000

F 00000000 00000000 F O O _

2 03 FF 1 0300 0000331000

F 00000000 00000000 F O O _

2 0 3 FF 1 0300 0000331000

F 00000000 00000000 F O O __

0300 0000331000

1

2 0 3 FF
2 03 FF 1

F 00000000 00000000 F O O __

0300 0000331000

F 00000000 00000000 F O O _

2 03 FF 1 0300 0000331000

F 00000000 00000000 F O O __

0300 0000331000

1
1

1
1

1
1

2 0 3 FF
2 0 3 FF

F 00000000 00000000 F O O __

0300 0000330000

F 00000000 00000000 F O O __
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ArcSine & ArcCosine Routine Using Chebyshev’s Method
All floating point inputs and outputs are double precision. The output is in radians.

Steps Required to Perform the Calculation

STEP 1 — Preprocessing; range reduction is not needed, because an input, X,
outside the range of [ — 1,1] indicates an error. This routine requires
that the X2 be less than or equal to 1/2. The first operation to be
performed is to square X, then multiply it by 4.0, and finally subtract

1.0.
X1« XsX#4 — 1

STEP 2 — Core Calculation; X1 in Step 1 will be referred to as ‘x’ in the core
calculation.

X2 <= Cseries_asin&acos
< (({HHHlcrg*x +Cc17)*x + c16)*x +
C15*X + €14)*x + c13)*x + c12)*x + c11)*x + c10)*x +
cg)*x + cg8)*X +C7)*x + cgl*x + CB)*x + c4)*x + c3)*x +
c2)*x + c1l*x + cQ
STEP 3 — Postprocessing; multiply the output of the core calculation times

SQRT(2.0), then multiply this product by X, the original input. This
yields ArcSine(X). To calculate ArcCosine(X), the following identity

is used:

ArcCosine(X) = pi/2 — ArcSine(X)

X3 < X2+SQRT(2.0)
ArcSine(X) < X3=+X
ArcCosine(X) < pi/2 — ArcSine(X)

Algorithms for the Three Steps
Step 1 perform the preprocessing:
T1 < X*X

T2+4.0+T1
T3<T2 ~- 1 T3 is X1 in Step 1, the input to the core

routine

LY88LIOVYLNS
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Step Two perform the core calculation:

T4 <c18+*CREG
T5 «<T4 + c17 CREG < T3
T6 <« T5+CREG
T7 <T6 + c16
T8 <« T7+CREG
T9 «<T8 + c15
T10 < T9+CREG
T11<T10 + c14
T12 «<T11+CREG
T13<T12 + ¢13
T14 < T13+CREG
T15«<T14 + c12
T16 <« T15+CREG
T17«<T16 + c11
T18 <T17+CREG
T19+«T18 + c10
T20 < T19+«CREG
T21+<T20 + cg
T22 «<T21+«CREG
T23«T22 + cg
T24 «<T23+CREG
T25«T24 + c7
T26 <T25+CREG
T27<T26 + cg
T28 <~ T27+«CREG
T29+T28 + cg
T30 < T29+CREG
T31«T30 + c4
T32 < T31+CREG
T33«T32 + ¢c3
T34 <T33+CREG
T35« T34 + c2
T36 <~ T35+«CREG
T37«<T36 + ct
T38 < T37+CREG
T39«T38 + cq

Step 3 perform the postprocessing:

T40 < X»*T39
ArcSine(X) < T40=SQRT(2.0) SQRT(2.0) entered as a constant
ArcCosine{X) < pi/2 — ArcSine(X)

7-193
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Required System Intervention
There is no system intervention required to calculate ArcSine(X) and ArcCosine(X).

Number of ‘ACT8847 Cycles Required to Calculate ArcSine(x) and
ArcCosine(x)

The total number of cycles required to perform the ArcSine(x) and ArcCosine(x)
calculation is 68.

Listing of the Chebyshev Constants (c’s)

The constants are represented in IEEE double-precision floating point format.

c18 = 3DA4A49F8CCDIE73
c17 = 3DCOSDFE52AAD200
c16 = 3DCCF31E26F94C8D

c15 = 3DEB6CDA3C8CAEBO
c14 = 3E0768DIFAEISOEA
c13 = 3E2383A37598FC80
c12 = 3E403E4B2F65FODE
c11 = 3ESBAFC8245ABDF8
c10 = 3E77E3333AFF1AB4
cg = 3E94E3A4D4220C9C
cg = 3EB296DD4CO84ACB
c7 = 3EDOE913F5F9D496
cg = 3EEFA74E896F8SFA8
c5 = 3FOEC76B7832DBB6
c4 = 3F2F978698C8B2E4
c3 = 3F519B1087542073
co = 3F7696895FFCO5A0
c1 = 3FA375CA61D2988C
co = 3FE7B20423D1D930
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Microcode Table for the ArcSine(x) and ArcCosine(x) Calculation

ple of 4 is right justified and zero filled. For the microcode

All numbers are in hex. Any field with a length that is not a multi
table, the value of X has been chosen to be 1/(SQRT(2.0)).

0
E

RFSBSTSOO
NARYEETETEETE
DSCTLSLYSGC

N

F

R H

PEECUPCC S
B NNL

D
B

EANL

LOE

ABK PKNULLT SLCO s

TCESTY

T

w

C EMF O ET

01CO0 0000331000

1
1
1
1

1
1
1
1
1
1

1
1

2 0 3 FF

2 0 3 FF

F 3FEGAOSE 667F3BCD F 0 O
F 3FE6AO9E 667F3BCD F

01C0 0000331000

1

1

01C0 0000331000

2 0 3 EF 1

F 40100000 00000000 F 0 O
F 00000000 00000000 F

01CO0 0000331000

2 0 3 EF 1t

o __

1

0180 0000331000
018 0000331000

1
1

2 03 FB 1

F 00000000 00000000 F O O

2 03 FB 1

F BFFOO000 00000000 F 0 1

01C0. 0000331000
10 0180 0000331000

1

1 3 BF 1 1

2

F 3NDA4A49F 8CCD9E73 F 0 1

F 00000000 00000000 F O O I- 2 0 3 FB 1

F 3DCOSDFE 52AAD200 F 0 1

0180 0000331000
01CO0 0000331000

1
1
1
1
1

1
1
1
1
1

2 03 FB 1
2

1 3 9F 1

F 00000000 00000000 F O O

0180 0000331000
0180 0000331000

2 03 FB 1

F 00000000 00000000 F O 0O

2 03 FB 1

F 3DCCF31E 26F94C8D F 0 1

01CO0 0000331000

2 13 9F 1
2 03 FB 1

F 00000000 00000000 F 0 O

0180 0000331000
0180 0000331000
01C0 0000331000

1
1
1
1
1
1
1

1
1

F 00000000 00000000 F 0 O

2 03 FB 1

F 3DE86CDA 3C8CAEBO F 0 1

1
1
1
1
1

2 1 3 9F 1
2 03 FB 1

F 00000000 00000000 F O O

0180 0000331000

F 00000000 00000000 F O O

0180 0000331000
01C0 0000331000

2 03 FB 1

F 3E0768D9 F4E950EA F 0O 1
F 00000000 00000000 F O O

2 13 9F 1
2 03 FB 1

0180 0000331000

F 00000000 00000000 F O O



Microcode Table for the ArcSine(x) and ArcCosine(x) Calculation {(Continued)

00

NARYETETETETEHTE

RFSBSTSO

N

RH F
E AN L

PEECUPCC S

D
B

LO E

ABK PKNUL SLCO S

B NNL

DSCTLSLYSC

TCESTY

T

w

C EMF O ET

0180 0000331000

1
1
1
1
1
1
1

1
1
1
1

2 03 FB 1

2

F 3E2383A3 7598FC80 F O 1 _

01C0 0000331000

1 3 9F 1

F 00000000 00000000 F O O _

2 03 FB 1 018 0000331000

F 00000000 00000000 F O O __

2 03 FfB 1 0180 0000331000

F 3E403E4B 2F65FODE F O 1 _

01CO0 0000331000

1
1
1

13 9F 1
2 03 FB 1

2

F 00000000 00000000 F O O __

0180 0000331000

F 00000000 00000000 F O O _

2 03 FB 1 0180 0000331000

F 3ESBBAFC8 245ABDF8 F O 1 _

01CO 0000331000

1
1
1
1
1
1
1

1
1
1
1
1
1
1

1 3 9F 1
2 03 FB 1

2

F 00000000 00000000 F O O _

0180 0000331000

F 00000000 00000000 F O O _

2 03 FB 1 0180 0000331000

F 3E77E333 3AFF1AB4 F O 1 __

01CO0 0000331000

13 9F 1
2 03 FB 1

2

F 00000000 00000000 F O O _

0180 0000331000

F 00000000 00000000 F O O _

2 03 FB 1 0180 0000331000

2

F 3E94E3A4 D4220C9C F O 1 _

01CO0 0000331000

1 3 9F 1

F 00000000 00000000 F O O _

0180 0000331000
11 0180 0000331000

1

2 03 FB 1

F 00000000 00000000 F O O __

2 03 FB 1

2

F 3EB296DD 4CO084ACB F 0 1 __

01C0 0000331000

1

1
1
1
1
1

13 9F 1

F 00000000 00000000 F O O _

0180 0000331000

1

2 03 FB 1

F 00000000 00000000 F O O _

0180 0000331000

2 03 FB 1

2

F 3EDOE913 F5F9D496 F O 1 __

01C0 0000331000

1
1

13 9F 1

F 00000000 00000000 F O O _

0180 0000331000
11 018 0000331000

2 03 FB 1

F 00000000, 00000000 F O O __

2 03 FB 1

2

F 3EEFA74E 896F8FA8 - F O 1 _

01C0 0000331000

1
1

1

13 9F 1

F 00000000 00000000 F O O _

0180 0000331000

1

2 03 FB 1

F 00000000 00000000 F O O _

~
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7-200

DSCTLSLYSC

ABK P KN L SLCO S

TCESTY

T

w
C

CEMFOET

-0
(o)al

0180 0000331000

1
1
1
1
1

1
1
1
1
1

2 03 FB 1
2

F 3FOEC76B 7832DBB6 F O 1

01C0 0000331000

1 3 9F 1

F 00000000 00000000 F 0O O

0180 0000331000

2 03 FB 1

F 00000000 00000000 F 0 O

0180 0000331000

2 03 FB 1
2

F 3F2F9786 98C8B2E4 F 0 1

01C0 0000331000

1 3 9F 1

F 00000000 00000000 F 0 O

0180 0000331000

1
1

1
1

2 03 FB 1t

F 00000000 00000000 F O O

0180 0000331000
01C0 0000331000

2 03 FB 1
2

F 3F519B10 87542073 F 0 1

1
1
1
1

1
1
1
1
1
1
1

13 9F 1

F 00000000 00000000 F O O

0180 0000331000

2 03 FB 1

F 00000000 00000000 F O O

0180 0000331000
01C0 0000331000

2 03 FB 1
2

F 3F769689 5FFCO5A0 F 0O 1

1 3 9F 1

F 00000000 00000000 F 0O O

0180 0000331000

1
1
1
1
1
1
1
1
1

2 03 FB 1

F 00000000 00000000 F O O

0180 0000331000

2 03 FB 1
2

F 3FA375CA 61D2988C F 0 1

01C0 0000331000

1 3 9F 1

F 00000000 00000000 F 0 O

0180 0000331000

1
1

2 03 FB 1

F 00000000 00000000 F O O

0180 0000331000

2 03 FB 1
2 1 3 BF 1

F 3FE7B204 23D1D930 F 0 1

01C0 0000331000

1
1
1
1
1
1
1

F 3FE6AO9E 667F3BCD F 0 1

01C0O 0000331000

2 0 3 EF 1

F 3FF6AO09E 667F3BCD F 0 O
F 00000000 00000000 F

01C0 0000331000

2 0 3 EF 1

0 _

1

0180 0000331000

2 03 FF 1

F 00000000 00000000 F 0 O

0300 0000331000

1
1
1
1

2 03 FF 1
2 1 3 FB 1

F 00000000 00000000 F O O

0183 0000330000
0300 0000331000

F 3FF921FB 54442D18 F 0 1

2 0 3 FF 1

2 0 3 FF

F 00000000 00000000 F 0 O

0300 0000330000

1

1

F 00000000 00000000 F 0O O



ArcTangent Routine Using Chebyshev’s Method
All floating point inputs and outputs are double precision. The output is in radians.
Steps Required to Perform the Calculation

STEP 1 — Preprocessing; If the magnitude of the input, X, is greater than 1.0,
then the reciprocal must be taken. If the magnitude of X is not greater
than 1.0, then pass X. Let this number (either X or 1 .0/X) be referred
to as X1. Next multiply X1 times 2.0, then multiply this resulting
number by X1. Finally, subtract 1.0 from this last product.

If |X]| > 1.0
Then X1 < 1.0/X
Else X1 < X
X2 < X1%2.0+X1 - 1.0

STEP 2 — Core Calculation; X2 in Step 1 will be referred to as 'x’" in the core
calculation.

X3 < Cgeries_atan

< (e 19*x +€18)*x + C17)*X + €16)*X + C1B)*X +
c14)*x + €13)*x + c12)*x + c11)*x + c10)*x + cgl*x
+cg)*x + C7)*X + Cgl*x + cp)*x + c4)*x + c3)*x + €2)*x
+ c1)*x + €0

STEP 3 — Postprocessing; multiply the output of the core calculation times X1.
Let this number be referred to as X4. The next computation will yieid
the answer. If X was greater than 1.0, then subtract X4 from pi/2.
If X was less than — 1.0, then subtract X4 from —pi/2. If neither of
the two conditions above are true, then X4 is the answer.

X4 < X3+X1
fX>1.0
Then ArcTangent(X) < pi/2 — X4
Else If X < —1.0
Then ArcTangent(X) < —pi/2 — X4
Else ArcTangent{X) < X4

SN74ACT8847 i
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Algorithms for the Three Steps

Step 1 perform the preprocessing:

Step 2 perform the core calculation:

7-202

if [X| > 1.0

Then T1 < 1.0/X
T2 <« T1+2.0

T3 < T2+CREG
T4 «<-T3 - 1.0

Else Tt <« X
T2 < T1+2.0
T3 < T2+T1

T4 < T3 - 1.0

T5 <«c19*CREG
T6 «<7T5 + c18
T7 < T6+CREG
T8 «T7 + c17
T9 <« T8+CREG
T10«<T9 + c16
T11 «<T10+CREG
T12+T11 + c15
T13+<T12+CREG
T14+<T13 + c14
T156 <T14+CREG
T16«<T15 + c13
T17 <T16+CREG
T18«T17 + cq2
T19 <T18+CREG
T20<T19 + c11
T21 < T20+«CREG
T22<T21 + c10
T23 <~ T22+CREG
T24«<T23 + cg
T25 < T24+CREG
T26 <T25 + cg
T27 < T26+CREG
T28+T27 + c7
T29 < T28+«CREG
T30+T29 + cg

T1is X1 in Step 1, must be stored

externally
CREG <« T1

CREG < T4



T31 < T30+CREG
T32«T31 + ¢5
T33 < T32+CREG
T34<T33 + c4
T35 < T34+CREG
T36 < T35 + c3
T37 < T36+CREG
T38<T37 + c2
T39 < T38+CREG
T40«<T39 + ci
T41 < T40+CREG
T42 <T41 + ¢cQ

Step 3 perform the postprocessing:

T43 < T42+T1

IfX > 1.0 CREG « T43
Then ArcTangent(X) < pi/2 — CREG
Return

fX < -1.0

Then ArcTangent(X) < —pi/2 — CREG
Return

ArcTangent(X} < CREG
Required System Intervention

As seen in the algorithm for Step 1, the *ACT8847 performs a compare. The results
of this compare determine what kind of preproccessing is to be performed. In Step 3,
there are two more compare operations. The system must therefore perform additional
decision making. In addition, the system must store T1, and later (in the postprocessing)
provide this value to the ‘ACT8847.

Number of ‘ACT8847 Cycles Required to Calculate ArcTangent(x)

Calculation of ArcTangent{x) requires at most 89 cycles (including the divide
instruction). In addition, it is assumed that 156 additional cycles are required due to
the compare instructions, and resulting system intervention. Therefore, the total number
of cycles to perform the ArcTangent(x) calculation is 104.
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Listing of the Chebyshev Constants (c’s)
The constants are represented in IEEE double-precision floating point format.

c19 = BDC4D6CC6308553F
c18 = 3DDFFD56FCFD2315
c17 = BDE880782D99D071
c16 = 3E0409670CB71218
c15 = BE237C8239249877
c14 = 3E3F1358EC1D6ACO
c13 = BE587CD25F4AFBED
c12 = 3E73D2388BOB8AS6
c11 = BE90O28E921CABA94
c10 = 3EAA814997A38D4E
cg = BECSEDAD9A21FESF
cg = 3EE256E57BAO7FAE
c7 = BEFF171F48FDF707
cg = 3F1ACFA9F95CAODF
c5 = BF37A8464221D994
c4 = 3F558DF7A83283C9
c3 = BF749B3E2E433683
c2 = 3F955A300BFB8078
c1 = BFBA1494C19FADD4
co = 3FEBDA7A85BD40CB
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Microcode Table for the ArcTangent(x) Calculation

All numbers are in hex. Any field with a length that is not a multiple of 4 is right justified and zero filled. For the microcode

table, the value of X has been chosen to be SQRT(3.0).

Tl
N
-
o

00

NARYETETETETEFTE

RFSBSTSO

N

F

H

R
LOE EANL

PEECUPCC S
B NNL

D
B

DSCTLSLYSC

ABK PKNUL SLCO S

TCESTY

T

w
Cc

C EMF O ET

- O
(oNa

0O18A 0000331000

1
1
1
1
1
1
1
1

1
1

1
1

2 0 3 FF

2 0 3 FF

F 3FFOO000 00000000 F 0 O

018A 0000331000

F 3FFBB67A E8584CAB F 1 1

0300 0000331000

1
1
1

2 03 FF 1

2

F 00000000 00000000 F 0O O

O1EO 0OO0O00331000
0300 0000331000

13 FF 1

F 00000000 00000000 F 0O O

1

2 0 3 FF
2 0 3 FF
2 0 3 FF

F 00000000 00000000 F O O

0300 0000331000

1
1
1
1
1

1
1

F 00000000 00000000 F O O

0300 0000331000

F 00000000 00000000 F O O

0300 0000331000

2 03 FF 1
2 0 3 FF
2 0 3 FF

F 00000000 00000000 F O O

0300 0000331000

1

1
1

F 00000000 00000000 F 0 O

0300 0000331000

F 00000000 00000000 F O O

0300 0000331000

1
1
1
1
1

1
1
1

2 03 FF 1
2 0 3 FF
2 0 3 FF
2 0 3 FF
2 0 3 FF

F 00000000 00000000 F O O

0300 0000331000

1
1
1

F 00000000 00000000 F O O

0300 0000331000

F 00000000 00000000 F O O

0300 0000331000

1
1
1
1

F 00000000 00000000 F 0 O

0300 0000331000

1

F 00000000 00000000 F O O

01CO 0000331000

1
1

2 03 EF 1

F 40000000 00000000 F O O

01C0 0000330000

10 01C0 0010331000

2 03 EF 1

F 00000000 00000000 F 1 O

F 00000000 00000000 F 0 O 2 0O 3 6F 1

F 00000000 00000000 F O O

01CO 0000331000

1
1
1

2 03 6F 1 1

0180 0000331000

1
1
1

2 03 FB 1

F 00000000 00000000 F 0 O

0180 0000331000

2 03 FB 1
2

F BFFOOO0O0 00000000 F O 1

01C0 0000331000

1 3 BF 1 1

F BDC4D6CC 6308553F F O 1



Microcode Table for the ArcTangent(x) Calculation (Continued)

RFSBSTS

H

R
LOE EANL

P EECUPCC S
B NNL

D
B

NARYETETETETETE

N

ABK P KNUL SLCO S

DSCTLSLYSC

TCESTY

T

w
C

C EMF O ET

D

F 00000000 00000000 F O O 2 0 3 FB 1

F 3DDFFD56 FCFD2315 F O 1 __

10 018 0000331000

0180 0000331000

1
1
1

1
1
1
1
1
1

2 03 FB 1

2

01C0 0000331000

13 9F 1

F 00000000 00000000 F O O _

2 03 FB 1 0180 0000331000

F 00000000 00000000 F O O __

2 03 FB 1 0180 0000331000

F BDE88078 2D99D071 F O 1 __

01C0 0000331000

2 13 9F 1 1
2 03 FB 1

F 00000000 00000000 F O O

0180 0000331000

1
1
1
1
1
1
1
1
1

F 00000000 00000000 F O O __

0180 0000331000

1
1
1
1
1
1
1
1

2 03 FB 1

2

F 3E040967 0CB71218 F O 1 _

01C0 0000331000

13 9F 1

F 00000000 00000000 F O O __

2 03 FB 1 0180 0000331000

F 00000000 00000000 F O O _

0180 0000331000

2 03 FB 1
2

F BE237C82 39249B77 F O 1

01C0 0000331000

13 9F 1

F 00000000 00000000 F O O __

2 03 FB 1 0180 0000331000

F 00000000 00000000 F O O __

2 03 FB 1 0180 0000331000

F 3E3F1358 EC1D6ACO F O 1 __

01C0 0000331000

1 3 9F 1

2

F 00000000 00000000 F O O _

0180 0000331000

1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1

2 03 FB 1

F 00000000 00000000 F O O __

0180 0000331000

2 03 FB 1

2

F BEG87CD2 5F4AFBED F O 1 __

01C0 0000331000

1 3 9F 1

F 00000000 00000000 F O O __

0180 0000331000
0180 0000331000

2 03 FB 1

F 00000000 00000000 F O O __

2 03 FB 1

2

F 3E73D238 8BOB8A86 F O 1 _

01C0 0000331000

13 9F 1

F 00000000 00000000 F O O __

2 03 FB 1 0180 0000331000

F 00000000 00000000 F O O _

2 03 FB 1 0180 0000331000

F BESO28ES 21CA6A94 F 0 1 _
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Microcode Table for the ArcTangent(x) Calculation (Continued)

~

RFSBSTSOO0D
NARYEETETETEETE

N

F

R H
LOE EANL

P EEC P CC S
B NNL

D
B

N
-
N

DSCTLSLYSC

ABK PKNUL SLCO S

TCESTY

T

w
o

C EMFOET

01CO0 0000331000

1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1

1 3 9F 1

2

F 00000000 00000000 F O O

0180 0000331000

2 03 FB 1

F 00000000 00000000 F O O

0180 0000331000

2 03 FB 1

F 3EAA8149 97A38D4E F O 1

01C0 0000331000

2 13 9 1
2 03 FB 1

F 00000000 00000000 F O O

0180 0000331000
0180 0000331000
01CO 0000331000

F 00000000 00000000 F O O

2 03 FB 1
2

F BECS5EDAD S9A21FE5F F 0O 1

1 3 9F 1

F 00000000 00000000 F O O

0180 0000331000

2 03 FB 1

F 00000000 00000000 F O O

0180 0000331000

1
1
1
1
1
1
1

1
1
1
1
1
1

2 03 FB 1

2

F 3EE256E5 7BAO7FAE F O 1

01C0 0000331000

1 3 9F 1

F 00000000 00000000 F O O

0180 0000331000

1
2 03 FB 1

2 03 FB

F 00000000 00000000 F O O

0180 0000331000

F BEFF171F 48FDF707 F O 1

01CO 0000331000

2 1 3 9F 1
2 03 FB 1

F 00000000 00000000 F O O

0180 0000331000

F 00000000 00000000 F O O

0180 0000331000

1
1
1
1
1
1
1
1
1
1

2 03 FB 1

F 3F1ACFA9 F95CAODF F O 1

01C0 0000331000

1
1
1
1
1
1
1
1
1

1 3 9F 1
2 03 FB 1

2

F 00000000 00000000 F O O __

0180 0000331000

F 00000000 00000000 F O O

0180 0000331000

2 03 FB 1
2

F BF37A846 4221D994 F 0O 1

01C0 0000331000

1 3 9F 1

F 00000000 00000000 F O O

0180 0000331000
0180 0000331000

2 03 FB 1

F 00000000 00000000 F O ©

2 03 FB 1

2

F 3F558DF7 A83283C9 F 0 1 __

01CO0 0000331000

1 3 9F 1

F 00000000 00000000 F O O

2 03 FB 1 0180 0000331000

F 00000000 00000000 F O O __

0180 0000331000

2 03 FB 1

F BF749B3E 2E433683 F O 1



Microcode Table for the ArcTangent{x) Calculation {Concluded)

[e)e}

NARYETETETEFE

RFSBSTSO

RHA

PEEC P CC S
B NNL

D
B

E ANL N E
DSCTLSLYSC

LO E

ABK P KNUL SLCO S

TCESTY

T

w
c

C EMFOET

01CO0 000033 1000O0

1
1
1
1
1
1
1
1

1
1
1

13 9F 1

2

F 00000000 00000000 F O O

0180 0000331000
0180 0000331000
01CO0 0000331000

2 03 FB 1

"F 00000000 00000000 F O O

2 03 FB 1
2

F 3F955A30 OBFB8078 F O 1

1
1
1
1
1
1
1
1
1

1 3 9F 1

F 00000000 00000000 F O O

0180 0000331000
0180 0000331000

2 03 FB 1

F 00000000 00000000 F O O

2 03 FB 1
2

F BFBA1494 C19FADD4 F O 1

01CO 0000331000

13 9F 1

F 00000000 00000000 F O O

0180 0000331000
0180 0000331000

2 03 FB 1

2
2

F 00000000 00000000 F O O

1
1
1
1

03 FB 1
1 3 BF 1

F 3FEBDA7A -85BD40CB F O 1

01CO0 0000331000

F 3FE279A7 4590331C F 0 1

0182 0000331000

1
1
1

2 0 3 FF
2 0 3 FF

F 00000000 00000000 F O O .1 2 O 3 FF
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0300 0000330000
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Exponential Routine Using Chebyshev’s Method
All floating point inputs and outputs are double precision.
Steps Required to Perform the Calculation
STEP 1 — Preprocessing; first multiply the input, X, by logoe (yielding X1). Next,

convert this product to an integer, using truncate mode {yielding X2).
Form the variable EX by adding 1024 to X2. EX is used in the
postprocessing part of the routine. Subtract 1023 from EX to find
the variable N (N is actually X2 incremented by 1). Convert N to a
floating point number (yielding X3). Subtract X1 from X3, multiply
this difference by 2.0, and then finally subtract 1.0. This last
computation is the input to the core routine.

X1 < X+logze
X2 < TRUNC(X1)
EX < 1024 + X2
N< EX - 1023
X3 < DOUBLE(N)
X4 < 2.0+(X3 - X1) - 1.0

STEP 2 — Core Calculation; X4 in Step 1 will be referred to as 'x’ in the core

calculation.

X5 « Cgseries_exp
< (Il 1*x + c10)*x + cg)*x + cg)*x + c7)*x + c@)l*x +

Ccgl*x + c4)*x + c3)*x + c2)*x + C1)*x + €O

STEP 3 — Postprocessing; multiply the output of the core calculation times 2N,

To generate 2N, perform the following: shift left logical 20 positions
{bits) the variable EX (which was calculated in Step 1). The resulting
bit pattern will be the double precision floating point representation
of 2N. However, the *ACT8847 will not at this point recognize the
bit pattern as a floating point number. So this number must be output
from the Y bus, and then input (declaring the input to be a double
precision floating point number) on the input bus. Now the 'ACT8847
will process 2N as a double float, and so the core output, X5, can
be multiplied by 2N to produce the final result. ‘SLL’ means to shift

left logical.

X6 < EX SLL by 20 bits

Y bus < X6
DA bus < Y bus
Exp(X) <« X5 * X6
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Algorithms for the Three Steps

Step 1 perform the preprocessing:

T1 <« X=+logpe log2e entered as a constant
T2 < INT(T1) round controls set to truncate
T3 <1024 + T2 T3 is EX in Step 1, must be

stored externally, CREG < T1
T4 < T3 - 1023

TS < 1x+T4 makes T4 available to A2 MUX
T6 < DOUBLE(TS5) convert from integer to double
T7 <T6 - CREG

T8 <«2.0+T77

T9 <78 - 1.0 T9 is X4 in Step 1, the

input to the core routine
Step 2 perform the core calculation:

T10 <c11+*CREG
T11«<T10 + c10 CREG < T9
T12 <T11+CREG
T13<T12 + cg
T14 < T13+CREG
T15«<T14 + cg
T16 < T15+«CREG
T17+<T16 + c7
T18 «T17+CREG
Ti19<T18 + cg
T20 < T19+CREG
T21+<T20 + c5
T22 < T21+CREG
T23«T22 + c4
T24 < T23+CREG
T25«<T24 + c3
T26 < T25+CREG
T27 <T26 + c2
T28 < T27+CREG
T29«T28 + ¢
T30 < T29+CREG
T31«T30 + co
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Step 3 perform the postprocessing:

T32 < T3 SLL by 20 bits Shift T3 20 bits left

Y bus < T32 QOutput and then Input T32
CREG « T31

DA bus < Y bus (= T32) Two cycles required to

input both halves of T32
Exp(X) <« T32+CREG

Required System Intervention

The system is required to store the variable EX, and then later provide this variable.
In addition, the system is required to route the variable T32 (in Step 3) from the Y
bus to the DA bus.

Number of 'ACT8847 Cycles Required to Calculate Exp(x)

Calculation of Exp({x) requires 52 cycles. Since there are no decisions which the system
is required to perform, the total number of cycle to perform the Exp(X) calculation is 52.

Listing of the Chebyshev Constants (c’s)

The constants are represented in IEEE double-precision floating point format.

1

c11 = BD45A7FCO5D3B501

c10 = 3D957BFD2DBF487C
cg = BDE351B821AC16D5
cg = 3E2F5BOE17440879
c7 = BE769E51EE631E87
cg = 3EBC8D7530548DD5
c5 = BEFEE4FD234A4926
c4 = 3F3BDB69BGESIBTAC
c3 = BF741839EB88156E
c9 = 3FA5BE298ADF0369
c1 = BFCF5E46537AB906
co = 3FEBAO9E667F3BCC

I
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Microcode Table for the Exp(x) Calculation

7-220

All numbers are in hex. Any field with a length that is not a multiple of 4 is right justified and zero filled. For the microcode

table, the value of X has been chosen to be 6.25.
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Microcode Table for the Exp(x) Calculation (Continued)
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Microcode Table for the Exp(x) Calculation (Concluded)
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High-Speed Vector Math and 3-D Graphics

Introduction

Texas Instruments SN74ACT8837 and SN74ACT8847 floating point units (FPU) are
designed to execute high-speed, high-accuracy mathematical computations. The
devices are especially suited for matrix manipulations such as those used in graphics or
digital signal processing. These FPUs multiply and add data elements by executing
sequences of microprogrammed calculations to form new matrices. Each device may be
configured for either single- or double-precision operation. Single-precision operation is
assumed throughout this report.

The 'ACT8847 is a functional superset of the 'ACT8837 and operates at higher clock
rates (up to 33 MHz) than the 16-MHz '8837. Unlike the 'ACT8837, the 'ACT8847 can
perform integer and logical operations and has built-in, hardwired algorithms for division
and square root operations.

This application report outlines the timing, data flow, and programming for several
common data vector calculations and matrix transformations. Further, itillustrates some
of the programming "tricks" resulting in fastest operation. Throughout, this document
compares the timing schemes for programs in which ali registers, including the ALU and
multiplier internal pipeline registers, are enabled ("pipelined” mode) with those for
equivalent programs in which the internal pipeline registers are disabled (“unpiped"
mode). Equations are provided to help the programmer select the more efficient mode,
and performance figures are included for both devices, with times given for 15-MHz and
30-MHz operations.

This report begins by covering simple vector arithmetic operations, which are
categorized as "computational" or "compare" functions for convenience. This document
then compares these operations as they are used in graphics applications to perform
three-dimensional coordinate transformations, perspective viewing, and clipping.

SN74ACT8837 and SN74ACT8847 Floating Point Units

Both the 'ACT8837 and 'ACT8847 floating point units (FPU) combine a multiplier and an
arithmetic-logic unit (ALU) in a single microprogrammable VLS| device. These devices
are implemented in TI's advanced one-micron CMOS technology and are fully
compatible with the IEEE standard for binary floating point arithmetic, STD 754-1985, for
either single- or double-precision operation.

Instruction inputs can select independent ALU operation, independent multiplier
operation, or simultaneous ALU/multiplier operation. Each FPU can handle three types
of data input formats. The ALU accepts data operands in integer format or IEEE floating
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point format. In the "ACT8837, integers are converted to normalized floating point
numbers with biased exponents prior to further processing. A third type of operand,
denormalized numbers, can also be processed after the ALU has converted them to
"wrapped" numbers, which are explained in detail in the SN74ACT8800 Family Data
Manual. The 'ACT8837 multiplier operates only on normalized floating point numbers or
wrapped numbers. The 'ACT8847 muitiplier also operates on integer operands.

Data enters the ’ACT8837 or 'ACT8847 through two 32-bit data buses, DA and DB (see
Figures 74 and 75}, which can be configured to operate as a single 64-bit data bus for
double-precision operations. Data can be latched in a 64-bit temporary register or
loaded directly into the input registers, RA and RB, which pass data to the multiplier and
ALU.

A clock-mode controf allows the temporary register to be clocked on the rising or falling
edge of the clock to support double-precision ALU operations at the same rate as single-
precision operations. Using the temporary register, double-precision numbers on a
single 32-bit input bus can be loaded in one clock cycle.

The input registers RA and RB are the first of three levels of internal data registers.
Additionally, the ALU and multiplier each have an internal pipeline register and an output
register. The ALU’s output register is denoted by "S" (sum), and the multiplier’s output
register is denoted by "P" (product). Any or all of these internal registers may be
bypassed.

A 64-bit constant register (C) with a separate clock is provided for temporary storage of a
multiplier result, ALU result, or constant for feedback to the multiplier and ALU. An
instruction register and a status register are also included.

Four multiplexers select the multiplier and ALU operands from the input, C, S, or
P registers. Results are output on the 32-bit Y bus; a Y output muitiplexer selects the
most or least significant half of the result for output.

In addition to add, subtract, and muitiply functions, the 'ACT8837 can be programmed to
perform floating point division using a Newton-Raphson algorithm. Absolute value
conversions, floating point-to-integer and integer-to-floating point conversions, and a
compare instruction are aiso available.

The 'ACT8847 FPU is fully compatible with IEEE Standard 754-1985 for addition,
subtraction, multiplication, division, square root, and comparison. The 'ACT8847 FPU
also performs integer arithmetic, logical operations, and logical shifts. Additionally,
absolute value conversions and floating point-to-integer and integer-to-floating point
conversions are available.
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For both the 'ACT8837 and 'ACT8847, the ALU and multiplier can operate in parallel to
perform sums of products and products of sums. Detailed information regarding the
instruction inputs for the various 'ACT8837 and 'ACT8847 configurations and operations
is given in the SN74ACT8800 Family Data Manual.

Mathematical Processing Applications

TI's SN74ACT8837 and SN74ACT8847 high-speed floating point units (FPU) are
designed to perform high-accuracy, computationally-intensive mathematical operations.
In particular, these FPUs can meet the computational demands of high-end graphics
workstations and advanced signal processing. Both applications involve repetitive
computations on arrays of data typically expressed as vector arithmetic operations.

For example, the calculation of the sum of products, or multiply-accumulate function, is
frequently used in both signal and graphics processing. In general form, the sum of
products equation is:

n
S = I kixj, for coefficients kj and data x;.
i=1

This sum of products is the central function involved in multiplying matrices. Such
matrices might represent a system of linear differential equations or the geometrical
transformation of a graphic object. Specifically, ann x n matrix A multiplied byann x m
matrix B yields an n x m matrix C whose elements cjj are given by:

n
cjj = Z ajk X bkj for i = 1,...n andj = 1,..,m
k=1

The 'ACT8837 and 'ACT8847 are designed to handle efficiently this kind of parallel
multiplication and addition.

Graphics Applications

The basic principle of graphics processing is that any object can be reduced to a
combination of points, lines, and polygons and then defined as a collection of points in
three-dimensional space. Because points, planes, transformation matrices and other
common data structures are vectors, most of the computations invalved in graphics
processing are vector operations.
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Computations for a 3-D graphics display are highly involved due to the complexity
introduced by the z-axis. Viewing an object from a particular perspective involves
transforming the object’s world coordinates, or its coordinates in the model! space, into
viewing, or eyepoint, coordinates. A series of translations and rotations map the viewing
system axes onto the world coordinate axes. Each individual point must be translated,
rotated and, if necessary, scaled in a proper order. Once the coordinate transformation is
complete, the coordinates are clipped to a viewing volume. Clipping algorithms employ
arithmetic operations to determine whether an object, or part of an object, is inside or
outside a pyramidal volume. Hidden surface routines may then be employed to delete
surfaces that fall behind a "nearer" surface from the viewer's perspective.

Matrix arithmetic is required for scaling, rotating, translating, or shearing an object, as
well as for the final process of projecting its visible parts to a two-dimensional frame
buffer. Any sequence of these transformations can be represented as a single matrix
formed by concatenating the matrices for the individual operations. The generalized
4 X 4 matrix for transforming a three-dimensional object is shown below, partitioned into
four component matrices, each of which produces a specific effect on the image. The
3 x 3 matrix produces linear transformation in the form of scaling, shearing, and rotation.
The 1 X 3 row matrix produces translation, while the 3 x 1 column matrix produces
perspective transformation with multiple vanishing points. The final single-element 1 x 1
matrix produces overall scaling.

3

3x3 X
T= 1
1x3 1x1

Overall operation of the matrix T on the position vectors of a graphics object produces a
combination of shearing, rotation, reflection, translation, perspective, and overall
scaling.

Vector Arithmetic

Programs that require repetitive computations on multiple sets of operands lend
themselves to vector-processing algorithms, in which the operands are viewed as
succeeding elements of long "data vectors." The next two sections outline the
programming for commonly-used vector operations. Most of these examples conclude
with a comparison of program timing for pipelined (internal pipeline registers enabled)
and unpiped (internal pipeline registers disabled) operation. For convenience, the
operations are labeled “"computational,” which includes simple and compounded adds,
multiplies, and divides, or "compare," which can be used to select maximum or minimum
values from succeeding pairs of numbers or from a list.
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Computational Operations on Data Vectors

This section covers the following vector operations: vector add, vector multiply, vector
divide, sum of products (also called inner, scalar, or dot product), and product of sums.
Since matrix multiplication is composed of a sequence of sum of products operations,
these two functions are discussed in the same section. In some cases, a whole class of
operations is covered under one heading. For example, the vector add operation
includes sums and differences of A;, Bj, |Aj|, and |Bj| in all combinations.

Vector Add

The vector add operation adds corresponding components of data vectors to obtain the
components of the output vector. Hence, for input vectors A and B and output vector Y,

each with N components,

Yi = Aj + Bj,

1=i=sN

The 'ACT8837 and 'ACT8847 perform this calculation in unchained, independent ALU

mode.

Table 62 shows the contents of the data registers at successive clock cycles for N = 6
with the FPU operating in pipelined mode. Since the data travels by way of the internal
pipeline register, two cycles pass before the first sum appears in the S register. The
contents of the internal pipeline register are not given in the flow.

Table 62. Data Flow for Pipelined Single-Precision Vector Add,N = 6

RA Al A2 A3 A4 A5 A6

RB B1 B2 B3 B4 B5 B6

S A1+81|A2+B2 |A3+B3 | A4+B4 | A5+B5 | A6+B6

P

c

Y Y1 Y2 Y3 Y4 Y5 Y6
CLK 1 2 3 4 5 6 7 8 9

Data transfers and operations for each clock cycle are summarized in the program listing
in Table 63. Detailed information on the instruction inputs required to perform each
operation is included in sections 5 and 7. Note that the selection of the output source (in
this case, the S register), which is determined by the 16 instruction bit, is programmed
along with the ALU or multiplier operation that generates the output.
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Table 63. Program Listing for Pipelined Single-Precision Vector Add, N = 6

. MULTIPLIER
REGISTER TRANSFERS ALU OPERATION | oo OO
LOADRA, RB; Y« S | ADD(RARB)
LOAD RA, RB; Y < S | ADD(RARB)
LOAD RA, RB; Y« S | ADD(RARB)

en -~

6. LOAD RA, RB; Y«<S ADD(RA,RB)

Timing and programming are similar for other independent ALU operations involving two
operands, such as (A — B), (B — A}, and compare (A,B). However, when the compare
function is used, two status bits must be generated before numeric values can be output
(see "Compare Operations on Data Vectors").

Because the vector add program closely parallels that for vector multiplication, pipelined
and unpiped modes for both vector add and multiply are compared in the next section.

Vector Multiply

The vector multiply operation multiplies corresponding elements of data vectors to
obtain the components of the output vector. Hence, for input vectors A and B and output
vector Y, each with N components,

Yi = Aj X Bj, 1 <i=sN.

The 'ACT8837 and 'ACT8847 perform this calculation in unchained, independent
muitiplier mode.

Pipelined Mode

Table 64 shows the contents of the data registers at successive clock cycles for N = 6
with the FPU operating in pipelined mode. The product may be replaced by a variety of
other independent multiplier operations, such as —(A x B), A x |B|, —(A x|B}), |A|
x |B], and —(]A| x |B]|). Data transfers and operations for each clock cycle are
summarized in the program listing in Table 65.

Table 64. Data Flow for Pipelined Single-Precision Vector Multiply, N = 6

RA Al A2 A3 Ad A5 A6

RB B1 B2 B3 B4 B5 B6
S
P A1xB1 |A2xB2 | A3xXB3 | AdxB4 | A5xB5 | A6xB6
C
Y

Y1 Y1 Y2 Y3 Y4 Y5 Y6

CLK 1 2 3 4 5 6 7 8 9
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Table 65. Program Listing for Pipelined Single-Precision Vector Multiply, N = 6

Unpiped Mode

MULTIPLIER

REGISTER TRANSFERS ALU OPERATION |  mpeosmo
1. LOADRA RB, Y« P MULT(RA,RB)
2. LOADRARB; Y<«P MULT(RA RB)
3. LOADRARB; Y<P MULT(RA,RB)
6. LOADRA,RB; Y«P MULT(RA,RB)

Table 66 shows the contents of the data registers at successive clock cycles during a
vector multiply operation for N = 6 with the FPU operating in unpiped mode. The vector
add operation progresses similarly. Since there is no “‘single-clocked storage’” in the
internal pipeline register, each product or sum is performed in one cycle.

Table 66. Data Flow for Unpiped Single-Precision Vector Multiply, N = 6

RA Al A2 A3 A4 A5 A6
RB B1 B2 B3 B4 BS B6
S
P A1xB1 | A2xB2 | A3xB3 | A4xB4 | A5xB5 | A6XB6
C
Y Y1 Y2 Y3 Y4 Y5 Y6
CLK 1 2 3 4 5 6 7 8

Comparison of Pipelined and Unpiped Modes

For both vector add and vector multiply operations carried out in pipelined mode, results
are outputtothe Y bus on clocks 3, ..., N + 2. In unpiped mode, results are output to the
Y bus on clocks 2, . . ., N + 1, thereby saving a cycle. Unfortunately, it is necessary to
operate at a lower clock rate in unpiped mode than in pipelined mode. The following
equation can be used to determine which of the two modes provides the faster
performance in a particular application. Pipelined operation is faster if:

(N + 2)Fp < (N + 1)/Fy,

where Fp and F, are the clock rates in pipelined and unpiped modes, respectively. As of
publication, pipelined mode provides faster performance for input vectors with N > 2,
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Sum of Products

The sum of products operation multiplies corresponding elements of data vectors and
adds the resulting products. The operation is also referred to as the inner product, scalar
product, or dot product of two vectors, since these are the names for the function as it is
used in vector algebra. For input vectors A and B, each with N components, the sum of
products operation yields a single output Y defined as follows:

N
Y = X (Aj x By
i=1

The 'ACT8837 and 'ACT8847 perform this calculation in chained mode so that
concurrent operation of the ALU and multiplier is possible.

Pipelined Mode

Table 67 shows the contents of the data registers at successive clock cycles for N = 8
with the FPU operating in pipelined mode.

Table 67. Data Flow for Pipelined Single-Precision Sum of Products, N = 8

RA Al | A2 | A3 | A4 | A5 | A6 | A7 | A8
RB B1 | B2 B3 | B4 | B5 | B6|B7 | B8

s st S3 |84 | S5 | 6| 57| S8 S7+8
P Pi | P2 P3| P4 |Ps5|P6|P7 | P8

c P2 | P2 s7

Y Y

CLK 1 2 3 4 5 6 7 8 9 |10 )11 ]12]13 14

Here, Pj = Aj X Bj, 81 = P1 + 0,83 = P3 + S1,54 = P4 + P2, Sg = Pg + S4,S7 = P7
+ 85, and Sg = Pg + Sg. The values of the sums could be more succinctly expressed as
Sj = Pj + Sj—2 (with Sg = S—1 = 0), except that So = Pp + 0 = P2 does not actually
appear in the data flow as a sum in the S register. Instead, the C register holds P» for two
cycles.

This approach, although introducing a certain lack of symmetry into the programming,
frees up the S register at a point allowing the efficient overlap of succeeding sum of
products operations without any dead cycles. A new sum of products operation can
begin at CLK 9, and the S register remains free to hold the first operation’s result in CLK
14. Similary, by storing 87 in the C register in CLK 12, rather than multiplying it by one,
the P register remains free to hold "P2" for the next pair of data vectors. By CLK 12,
87 =Py + P3 + P5 + P7and Sg = Pp + P4 + Pg + Pg, so that Y = S7 + Sg.
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Data transfers and operations for each clock cycle are summarized in the program listing

in Table 68.

Table 68. Program Listing for Pipelined Single-Precision Sum of Products,

N=38
MULTIPLIER
REGISTER TRANSFERS ALU OPERATION | qoeoym N
1. LOAD RA, RB MULT(RA,RB)
2. LOAD RA, RB MULT(RA,RB)
3. LOAD RA, RB ADD(P,0) MULT(RA,RB)
4 LOADRA RB; C+P MULT(RA,RB)
5. LOAD RA, RB ADD(P.S) MULT(RA,RB)
6. LOAD RA, RB ADD(P,C) MULT(RA,RB)
7. LOAD RA, RB ADD(P,S) MULT(RA,RB)
8. LOADRA, RB ADD(P,S) MULT(RA,RB)
9. ADD(P,S)
10. ADD(P.,S)
11. C«S
12. Yo-8 ADD(S,C)

The above algorithm imposes no delay between input vectors. The time required to carry
out the sum of products operation on M pairs of input vectors in succession, each of

length N, is N x M + 6 cycles.

Unpiped Mode

In the unpiped version of the sum of products, the data flow is more straightforward.
Again, chained mode is employed to allow the ALU and multiplier to operate
concurrently. Table 69 shows the contents of the data registers at successive clock
cycles for N = 8 with the FPU operating in unpiped mode. Here, P; = A; X Bj, and

Sj = S(i—1) + Pj, with Sp=0.

Table 69. Data Flow for Unpiped Single-Precision Sum of Products, N = 8

RA | A1 |A2 {A3 [ A4 | A5 | A6 | A7 | AB
RB [B1|B2|B3[B4 |B5|B6|B7 | B8
S S1 [ S2|S3 1S4 8586|857 S8
P P{ [P2 | P3| P4 |P5|[P6|P7|P8
9]
Y Y
CLK] 1 2 3 4 5 6 7 8 9 (10|11 112 {13 | 14

A new problem can be presented at CLK 9 without any delay between the vectors.
Therefore, the time required to compute the sums of products for M pairs of vectors,

each of length N, is N x M + 2 clock cycles.
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Comparison of Pipelined and Unpiped Modes

The following equation can be used to determine which of the two modes provides the
faster performance in a particular application. Pipelined operation is faster if:

(M x N + 6)Fp < (M x N + 2)/F,

where Fp and Fy are the clock rates in pipelined and unpiped modes, respectively.
Because the unpiped mode’s longer clock cycle usually outweighs its savings in cycles,
pipelined mode provides faster performance for input vectors with N > 4.

Product of Sums

The product of sums operation adds corresponding elements of data vectors and
multiplies the resulting sums. For input vectors A and B, each with N components, the
product of sums operation yields a single output Y defined as follows:

N
Y= 1 (A + Bj)
i=1

The product of differences can be computed by simply making the ALU operation
(A — B) or (B — A). The 'ACT8837 and 'ACT8847 perform this calculation in chained
mode so that concurrent operation of the ALU and multiplier is possible. The data flow
and program listing for the product of sums are identical to those for the sum of products,
except that the roles of add and multiply are reversed. The criteria used to decide
between pipelined and unpiped modes are also identical to those previously given.

Vector Divide

The vector divide operation divides corresponding elements of data vectors to obtain the
components of the output vector. Hence, for vectors A and B and output vector Y, each
with N components,

Yi = Aj/B;j, 1 <is<N.

The 'ACT8837 and 'ACT8447 perform this calculation using the Newton-Raphson
iterative method. This algorithm, which is described in detail in the SN74ACT8800 Family
Data Manual, calculates the value of a quotient Y by approximating the reciprocal of the
divisor B and then multiplying the dividend A by that approximation.

The following sections review the vector divide programs for the 'ACT8837 and the
'ACT8847. in the 'ACT8847, the divide algorithm is built-in.
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SN74ACT8837 Vector Divide

For division using single-element inputs A and B, the value of the reciprocal of B,
denoted by X, is determined iteratively using the following equation:

Xj+1 = Xj (2 - B x X

The seed approximation, X, is assumed to be given. The iteration stops when X is
determined to the desired level of precision. Assuming the presence of a seed ROM
providing 4-bits accuracy, three iterations are necessary to correctly determine a single-
precision result X. Given the seed for 1/B = X, Xj+1 = Xj (2 = B X Xj). A is eventually
multiplied by the value X3.

An 8-bit seed ROM is commonly employed and gives single-precision accuracy in only
two iterations and double-precision accuracy in three iterations. Instructions for
implementing an 8-bit seed ROM are included in the SN74ACT8800 Family Data Manual.
This example assumes that a 4-bit seed is used to develop the program.

Pipelined Mode

The ’ACT8837 performs the vector divide in chained mode. Table 70 shows the data flow
for pipelined operation. The value of (2 — B x X;) is denoted as Ti. Note that the value X3
does not appear, per se, in the table, but is expressed in terms of Xp to save
unnecessary calculations. The output Y is determined from the calculation of (A x X2)
x To in cycle 17, which is equivalent to A x X3, since X3 = X2 x Ta.

In order to keep X; available for the final calculation of Xj+ 1, a few programming "tricks"
are employed to keep the original value of each Xj within the chip while it is being altered
in the calculation of (2 — B x X;). First, X; is stored in the S register by adding 0to it. Then,
when the S register is needed, X; is moved to the P register by multiplying it by 1.

Table 70. Data Flow for 'ACT8837 Pipelined Single-Precision
Vector Divide, N = 1

RA | X0 B

RB B
) X0 T0 X1
P BxX0 X0 X1 BxX1
C
Y

CLK]| 1 2 3 4 5 6 7 8 9 10

RA B

RB A
S T1 X2 T2
P X1 X2 BxX2 AXX2 Y
C
Y Y

CLK| 11 12 13 14 15 16 17 18 19 | 20
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Data transfers and operations are summarized in the program listing in Table 71.
Because no operations begin on even-numbered cycles, only the odd-numbered clock

cycles are shown,

Table 71. Program Listing for ’ACT8837 Pipelined Single-Precision

Vector Divide, N = 1

MULTIPLIER
REGISTER TRANSFERS ALU OPERATION | Soeom Sl
1. LOAD RA, RB ADD(RA,0) MULT(RA RB)
3. ADD(2,-P) MULT(S,1)
5. MULT(S,P)
7. LOADRA ADD(P,0) MULT(RA,P)
9. ADD(2,—P) MULT(S 1)
11. MULT(S,P)
13.  LOAD RA ADD(P,0) MULT(RA,P)
15.  LOAD RB ADD(2,—P) MULT(S,RB)
17. Y«—P MULT(S,P)

In steps 1, 7, and 13, 0 is added to Xj so that Xj appears two cycles later in the S register.
In steps 3 and 9, the Xj value in the S register is multiplied by 1 so that it appears in the P
register two cycles later. In step 15, X; (from the S register) is multiplied by the dividend A
just input to RB.

Because no operations begin on even cycles, two vector divide operations may
be interleaved, calculating two quotients in 20 cycles. Table 72 shows the data flow
for computing two quotients, Y1 and Yo, where Y1 = A/B and Yo = C/D. The
approximation for 1/B is denoted by W, and the approximation for 1/D is denoted by X;.
Ti=(2~BxWj),and Qj = (2 - D x Xj).

Table 72. Data Flow for 'TACT8837 Pipelined Single-Precision interleaved
Vector Divide, N = 2

RA | WO | X0 B D
RB B D
S W0 | X0 T0 Qo W1 X1
P BXWO[DxX0] WO | X0 | Wi X1 IBxW1|DxX1
9]
Y
CLK| 1 2 3 4 5 6 7 8 9 10
RA B D
RB A c
S T Q1 W2 | X2 T2 Q2
P W1 | X1 W2 | X2 |BXW2|DxX2|AxXxW2|CxX2| Y1 Y2
Cc
Y Y1 Y2
CLK | 11 12 13 14 15 16 17 18 19 20
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The program listing for an interleaved vector divide is similar to that for a single divide
operation, with functions listed in each odd line and duplicated in the next even line for
the second operation.

As previously stated, the time needed to compute two single-precision divide operations
starting with a 4-bit seed ROM is 20 clock cycles. Since a new pair of divides can start at
CLK = 19, the time required to perform the vector divide operation on two N-dimensional
vectors is given by the following equation:

TIME = [18 x CEILING(N/2) + 2] cycles,

where the ceiling function rounds to the next highest integer for fractional values. With an
8-bit seed ROM, the time reduces to [12 x CEILING(N/2) + 2] cycles, which equals
2.5 million divides per second at 15 MHz.

Unpiped Mode
Table 73 shows the data flow for a vector divide in unpiped, chained mode.

Table 73. Data Flow for 'ACT8837 Unpiped Single-Precision
Vector Divide, N = 1

RA | X0 B B
RB B A
S X0 | TO X1 T1 X2 | T2
P BxX0| X0 [ X1 |BxX1} X1 X2 |BxX2|AxX2| Y
Cc
Y Y
CLK] 1 2 3 4 5 6 7 8 9 10

This program uses the same methods as the pipelined version to keep Xj within the chip.
The time needed to compute a vector divide of two N-element vectors is (9N + 1) cycles
with a 4-bit seed ROM and (BN + 1) cycles with an 8-bit seed ROM.

Comparison of Pipelined and Unpiped Modes
Using a 4-bit seed ROM, pipelined mode is faster if:
[18 x CEILING(N/2) + 2)/Fp < (9N + 1)/Fy,

where Fp and Fy, are the clock rates in pipelined and unpiped modes. As of publication,
pipelined mode provides faster performance for input vectors with N > 1.

SN74ACT8847 i
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A General Principle

The vector divide example illustrates a general programming principle that should be
considered whenever a program begins a new instruction every other cycle. In cases
where the C register is not used, it is simple to interleave another program, even one not
performing the same function.

Interleaving programs is not as easy if the C register is used because the C register is the
only nonpiped register. However, even using the C register, programs may often be
interleaved by staggering one against the other so that their use of the C register does
not overlap in time. Many of the programs so far discussed can be thought of as two such
interleaved programs, with the C register being used to delay the first result until it can be
combined with the second. (See, for example, the sum of products operation.)

SN74ACT8847 Vector Divide

Since the '"ACT8847 has a built-in algorithm for divide, the microprogram is more simple
than that for the ’ACT8837. Table 74 shows the data flow for pipelined operation. Data
transfers and operations are summarized in the program listing in Table 75.

Table 74. Data Flow for 'ACT8847 Pipelined Single-Precision
Vector Divide

RA | Al A2
RB | B1 B2
S
P A1/81
c
Y Y1
CLK| 1 2 3 4 5 6 7 8 9 10

Table 75. Program Listing for 'TACT8847 Pipelined Single-Precision
Vector Divide

MULTIPLIER

REGISTER TRANSFERS ALU OPERATION OPERATION
1. LOAD RA, RB; Y«~P DIVIDE
7. LOAD RA, RB; Y~P DIVIDE
13. LOAD RA, RB; Y~P DIV.lDE
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Note that the microinstructions are presented on the steps indicated (1,7, 13, .. ), witha
six-cycle lapse before the next operands can be input to RA and RB. Performing a vector
divide of two N-element single-precision vectors takes (6N + 2) cycles in pipelined
mode. M such pairs of vectors would require [6(N x M) + 2] cyclesin pipelined mode. In
unpiped mode, the equation is 7(N x M).

Compare Operations on Data Vectors

In independent ALU mode (unchained), two operands may be compared for equality
(A = B) and order (A > B). Additionally, the absolute values of either or both operands
may be compared. The compare function uses two status bits, the AGTB and AEQB
output signals. (When any operation other than a compare is performed, either
by the ALU or the multiplier, the AEQB signal is used as a zero detect. Hence, numericat
results cannot be output in the same cycle in which comparison status is output.)

For greatest efficiency, programs for compare operations should be written without
requiring conditional branches in the sequencer. If branches can be avoided, the
microcoding is simplified and the programs are immediately scalable to SIMD systems
employing many 'ACT8837 or 'ACT8847 chips.

This section covers vector max/min and list max/min operations.

Vector MAX/MIN

The vector max/min operations compare corresponding elements of data vectors and
select the maximum or minimum value to obtain the components of the output vector.
Hence, for input vectors A and B and output vector Y, each with N components,

Yi = MAX/MIN(A;, B), 1 =<i=<N

Pipelined Mode

Table 76 shows the suggested data flow for a pipelined vector MAX operation, where Y
is set to the max of (Aj, By) for all i. Included are rows to indicate the setting of the chain
mode instruction bit (9 for the ’ACT8837, 110 for the 'ACT8847) and the status bit being
sensed.
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Table 76. Data Flow for Pipelined Single-Precision Vector MAX

CHAIN N Y Y Y N Y Y Y N Y
RA A Al B1 A2 | A2 B2 | A3 [ A3
RB B1 B2 B3

S Al B1 A2 B2
P Al A2
C
Y Y1 Y2
STATUS A>B A>B
CLK 1 2 3 4 5 6 7 8 9 10

A comparison starts at CLK = 1, 5, etc., when the chain-mode instruction bit is low. The
result appears at CLK = 3, 7, etc., indicated by the AGTB and AEQB signals. AGTB is
saved off-chip for use as instruction bit 16 (output source) at CLK 4, 8, etc. This value for
16 selects the output source, either the multiplier or the ALU result, at CLK 6, 10, etc. For
example, if a comparison resultis A > B, the AGTB signal goes high and is used to set 16
high. 16 then selects the multiplier result (A;) to output. Similarly, if A < B, AGTB and 16
are low, and the ALU result (Bj) is output. The circuitous route taken by A;j on the way to
the P register is necessary because it is not possible to pass RA or RB through the
multiplier in parallel with passing the other through the ALU.

The program is not particularly well-packed and produces the vector max of a pair of
vectors of length N in (4N + 2) cycles. For M pairs of vectors of length N, the total time is
(4MN + 2) cycles. The program can be improved by applying the interleaving principle
previously discussed. The steps are rearranged so that a new operation begins every
other cycle, thus allowing two compare programs to be interleaved. Table 77 shows the
suggested data flow for a pipelined vector min/max operation, where Yj = MAX/MIN(A;,
Bj) and Z; = MAX/MIN(C;, Dj).

Table 77. Data Flow for Pipelined Single-Precision Interleaved
Vector MAX/MIN

CHAIN | N N Y Y Y Y N N Y Y Y Y N N
RA Al |Ct | A1 [C1|Bl |Dl|A2{C2|A2]|C2]|B2]|D2
RB B1 | D1 B2 | D2
S Al | C1 | B1 {D1 A2 | C2 | B2 | D2
P Al | Ct A2 | C2
c
Y Y1 | 2 Y2 | 72
STATUS A>B|A>B A>BIA>B
CLK 1 2 3 4 5 6 7 8 9 | 10111112 ] 13| 14

Again, Aj (and Cj) reaches the P register by an indirect route. However, this tighter
program performs M vector comparisons, two vector comparisons at a time, in
[6 X N x CEILING(M/2) + 2] cycles. (As previously defined, the ceiling function rounds
to the next highest integer for fractional values.) In this example, two separate vector
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comparisons on two-dimensional vectors are performed, giving 6 x 2x1+2=14
cycles. For M = 2 pairs of vectors, all of length N, the second program is as good as the
first. For M > 2, the interleaved program performs increasingly better as M gets larger.

This second program requires more off-chip logic, since the status outputs at CLK 3 and
4 must be saved separately off-chip for use at CLK 5 and 86, respectively. This problem
can easily be avoided by starting the calculations on the second pair of vectors two
cycles later than shown (i.e., at CLK 4). The time necessary to perform the vector MAX
operation on M pairs of N-dimensional vectors, two pairs concurrently, then increases to
[6 x N x CEILING(M/2) + 4] cycles.

Data transfers and operations for the odd lines only are summarized in the program
listing in Table 78. The complete program is obtained by repeating the equivalent of
each odd-numbered line in the next even line for the second pair of vectors.

Table 78. Program Listing for Pipelined Single-Precision interleaved
Vector MAX/MIN

MULTIPLIER
REGISTER TRANSFERS ALU OPERATION | opeonney
1. LOAD RA, RB COMPARE(RA,RB)
3. LOADRA ADD(RA,0)
5. LOAD RA; Y«P/S | ADD(RA,0) MULT(S.1)

Unpiped Mode
Table 79 shows the data flow for an unpiped vector MAX operation.

Table 79. Data Flow for Unpiped Single-Precision Vector MAX

CHAIN N Y Y N Y Y N Y Y
RA Al Al B1 A2 A2 B2 A3 A3 B3
RB B1 B2 B3

S Al B1 A2 B2 A3
P Al A2
c
Y Y1 Y2
STATUS A>B A>B A>B
CLK 1 2 3 4 5 6 7 8 9

The status bit is saved off-chip at CLK = 2, 5, etc., and used at CLK = 3, 6, efc,, as
the 16 bit of the instruction. 16 selects either the multiplier or ALU result to output to the
Y bus at CLK = 4, 7, etc.

The program computes the vector comparison of M pairs of vectors of length N in
[8 x M x (N + 1)] cycles.
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Comparison of Pipelined and Unpiped Operation
Pipelined operation is faster if:
[6 x N x CEILING(M/2) + 2)/Fp < (3 x M x N + 1)/Fy,

where Fp and Fy, are the clock rates in pipelined and unpiped modes, respectively. As of
publication, pipelined mode provides faster performance for M > 1.

List MAX/MIN

The list max/min operations select the maximum or minimum value, Z, of a list of N
elements. Hence, for input vector A with N components and output Z,

Z = MAX/MIN(A;), 1 =<isN

List min/max is an essential operation in computer graphics because it is used to find the
"extents" of a polygon or polyhedron. The extents are the maximum values of X, Y, and Z
among the list of vertices for the object in question. Many forms of comparison are
possible since the absolute value of either or both ALU operands may be employed.
However, the example in this section assumes that the largest element of a list of
N elements is desired.

Pipelined Mode

Table 80 shows the data flow for a pipelined list MAX operation,
where M1 = MAX(A1, A2); Mj = MAX[M(i-1), AG+1), 2 s i< N -2

Table 80. Data Flow for Pipelined Single-Precision List MAX

CHAN | Y IN | Y Y IYIN|Y[YI!YIN]Y]Y I lYI]YlY]Y
RA Al A1 | A2 A3 | A3 Ad | A4
RB A2
S Al A2 M1 M2 M3
P At A3 A4
c M1 M1 M2 | M2 M3
Y M3

STATUS A>B A>B A>B
CLK 11283} 41516 |7] 8 [9]|10[11]12[13]|14[15]16

As with vector comparison, the max/min of the absolute values Is available, since the
chip operates in independent ALU mode on the comparison steps. The comparison is
between the RA register and the RB register in step 2 and between RA and C in steps 6,
10, etc. In these steps, the chip is switched into unchained, independent ALU mode. The
status is saved off-chip and used to set the SRCC signal, which selects whether the P or
S data goes into the C register in steps 5, 9, etc.
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When the list max is in the C register, at CLK = 4N — 2, the C register contents must
then be passed through one of the functional units to the output. The MAX/MIN of an
N-element list therefore takes 4N cycles. M such vectors can be processed in

[M{4N - 1) + 1] cycles.

Data transfers and operations for the list max operation are summarized in the program
listing in Table 81. The program is carried out in pipelined mode, alternating between

unchained and chained modes. The list max reaches the output in cycle 4N.

Table 81. Program Listing for Pipelined Single-Precision List MAX

MULTIPLIER
REGISTER TRANSFERS ALU OPERATION OPERATION
1. LOAD RA ADD(RA,0)
2. LOAD RA, RB COMPARE(RA,RB)
3. LOAD RA ADD(RA,0) MULT(S,1)
4.
5, C+P/S
6. LOAD RA COMPARE(RA,C)
7. LOAD RA ADD(C,0) MULT(RA,1)
8.
9. C«P/S
REPEAT STEPS 6 THROUGH 9 UNTIL STEP 4N—2 IS REACHED, THEN:
aN - 2 ) ADD(C.0)

Comparison of Pipelined and Unpiped Modes

The equivalent unpiped program takes [M(3N—1)+1] cycles. Pipelined mode is fastest

if:

[M@N — 1) + 11/Fp < [M@N - 1) + 1]/Fy,

where Fp and Fy, are the clock rates in pipelined and unpiped modes, respectively. As of
publication, pipelined mode provides faster performance for all M and N.

Graphics Applications

This section summarizes the concepts related to creating a three-dimensional image
and examines a few of the matrix operations used in three-dimensional graphics
processing. These operations include coordinate transformations and clipping
operations. Additionally, this section illustrates some of the programming techniques

used to perform these operations.
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Creating a 3-D Image

Conceptually, translating 3-D images to 2-D display screens involves defining a view
volume that limits the scope of the vista the viewer can see at one time. For simplicity, a
standardized frame of reference, in which the viewer’s eye is located at the origin of the
coordinate system, is adopted in this example.

As illustrated in Figures 76a and 76b, the arbitrary world coordinates of the objects under
scrutiny are transformed into normalized "viewing" or "eye" coordinates that reflect this
frame of reference. Once the normalizing transformation is complete, the images within
the view volume are projected onto a 2-D view plane, which is assumed to be located,
like a projection screen, at a suitable relative distance from the viewer (see Figures 76¢c
and 77).

A basic model for creating a 3-D view, illustrated in Figure 78a, transforms arbitrary world
coordinates to normalized viewing coordinates and then “clips" the image to remove
lines that do not fall within the normalized view volume. Clipping is followed by projecting
the image to the 2-D projection plane (or "window"). The image is then mapped onto a
canonical 2-D viewport display and from there onto the physical device.

To incorporate image transformations, another model must be adapted (see Figure 78b).
After clipping, instead of projecting to the view plane, a perspective transformation is
performed on the clipped viewing coordinates, transforming the view volume into a 3-D
viewport, the "screen system" in which image transforms are performed. Then the image
is projected to the 2-D viewport display and onto the physical device.

In both models, the clipping operation is performed on coordinates in the viewing
system. This approach is referred to as "clipping in the eye system.” In practice, clipping
is often performed after transformation to the screen system. A trivial accept/reject test is
performed on viewing coordinates, the image is transformed to the screen system, and
then clipping is performed.
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vupP

VPN

Figure 76a. In a sequence of transformations, the world coordinate positions for the house are
transformed into the normalized viewing coordinate system (also called the eye system). For clarity,
the house is pictured outside the view column. Also shown are the direction vectors VUP (view up),
VPN (view normal), and VUP’ (the projection of VUP parallel to VUN onto the view plane.

VUP*

Figure 76b. After a series of translations, Figure 76c. This figure illustrates the 7
rotations, and shearing and scaling projection of the house from the perspective

operations, the view volume becomes the of the viewer, with eye located at the origin of
canonical perspective projection view volume, the coordinate system.

which is a truncated pyramid with apex at the

origin, and the house has been transformed

from the world to the viewing coordinate

system.

Figure 76. Creating a 3-D Image

J. D. Foley and A. Van Dam, Fundamentals of Interactive Computer Graphics, Addison-Westey Publishing
Company, Reading, MA, 1982, 291-293. Reprinted with permission.

SN74ACT8847
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The following sections illustrate programming techniques used in both of these
approaches to normalizing, clipping, and transforming a 3-D image. The operations are
grouped as "3-D Coordinate Transforms," "Clipping in the Eye System," and "Clipping in

the Screen System."

VIEW VOLUME

\
WORLD COORDINATE SYSTEM PROJECTION VIEWING (EYE)
PLANE COORDINATE SYSTEM
Figure 77. View Volume

Adapted with permission from a paper by Stephen R. Black entitied "Digital Processing of 3-D Data to Generate
Interactive Real-Time Dynamic Pictures" from Volume 120 of the 1977 SPIE journal "Three Dimensional

Imaging.”
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3D 3-D
WORLD TRANSFORM | VIEWING PROJECT
bbbl TO _— cup _— TO —>
COORD EYE SYSTEM | COORD WINDOW
2.D 2D
TRANSFORM
VIEWING TRANSFORM | NORMALIZED T0
TO  EE—
COORD DEVICE PHYSICAL
2-D VIEWPORT COORD DEVIOE
Figure 78a. Model of Procedure for Creating a 3-D Graphic
3D 3D
WORLD | TRANSFORM | VIEWING T“A"'Ts(’;o'“"
0 o OOR cup ! SCREEN >
COORD COORD
EVE SYSTEM SYSTEM
3D 2D
NORMALIZED 3-D PROJECTION | NORMALIZED | TRANSFORM
IMAGE e TO —_— TO
DEVICE TRANSFORM 2.0 DEVICE PHYSICAL
COORD COORD DEVICE

Figure 78b. Model for Creating and Transforming a 3-D Image

Three-Dimensional Coordinate Transforms

One of the computationally-intensive functions of a 3-D computer graphics system is that
of transforming points within the object space, such as translating an object or rotating
an object about an arbitrary axis. Equally complex is the transformation of points within

the object space (or "world coordinate system’) into points defined by a particular -
perspective and located within the viewing space (or "eye coordinate system”). This
latter process, known as the viewing transformation, generates points in a left-handed
cartesian system with the eye at the origin and the z-axis pointing in the direction of view.
The arbitrary world-system view volume and the objects therein are translated, rotated,
sheared, and scaled to match the predefined, canonical view volume of the eye system.

For a "realistic" image, the canonical view volume will be a truncated pyramid that mimics
the cone of vision available to the human eye. Alternatively, the volume can be a unit
cube. The series of operations that make up each transformation differ, but if
homogeneous coordinates are used, either transformation can be expressed as a

simple matrix multiply.

SN74ACT8847
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For each point (X, Y, Z) in the world system, a projection in homogeneous coordinates is
denoted by (Xh, Yh, Zn, Wh) where,

Xh, Yh, Zh, Wh) = (X X Wh, Y X Wh, Z x Wp, Wh),

and Wh is simply a scale factor, typically unity when floating point numbers are used.
(With fixed point values, nonunity values of Wh are used to maximize use of the numeric
range.) To transform a point in homogeneous coordinates, itis post-multiplied by a 4 x 4
transform matrix:

[Xn', YH', Zr', WR'] = [Xn, Yh, Zh, Wh] x [A11 A12 A13 A14
A21 A22 A23 A24
A31 A32 A33 A34
A41 A42 A43 A44

The transformed point can later be converted back to 3-space by dividing by Wh:
X, Y, Z') = (Xn'/ W', YR/ Wh', Zn'/ Wh)

The transform matrix is constructed by multiplying together a sequence of matrices,
each of which performs a simple task. The product of 4 or 5 elementary matrices may be
used to perform some complex overall operation on a set of points representing an
object or an entire scene. Once constructed, the transform matrix is used on each point
of the object to be transformed.

This section describes two approaches to the viewing transformation--the general case
and the specific yet typical case in which a reduced version of the transform matrix may
be used. Performance times are given for 15-MHz and 30-MHz frequencies, which
roughly correspond to the operating speeds of the 8837 and '8847, respectively.

Operation with General Transform Matrix
Table 82 shows part of the data flow for the pipelined and chained program for the

product of the homogeneous point {X, Y, Z, W] and the 4 x 4 transform matrix A.

LY88LIVYLNS

Table 82. Partial Data Flow for Product of [X, Y, Z, W] and
General Transform Matrix

RA X Y z W X Y Z W X Y
RB_| A11 | A21 | A31 | Ad41 | A2 | A22 | A32 | A42 | A13 | A23
S S1(1) S3(1) [ sa() [ s1@ | T

P P1(1) | P2(1) | P3(1) | P4(1) | P1(2) | P2(2) | P3(2) | P4(2)

C P2(1) | P2(3) S3(1) | P2(2) | P2(2)

Y X’
CLK | 1 2 3 4 5 6 7 8 9 10
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The technique is that already illustrated for the sum of products operation. The numbers
in parentheses indicate which column of the transform matrix is involved in the operation.
Here, P1(j) = X x A1j, P2(j) = Y x Agj, etc. S1(j) = P1(j) + 0, 83(j) = S1(j) + P3qj), S4(i)
= P2(j) + P4(),and Tj = S3(j) + S4(j). T1 = X, T2=Y,T3=2,T4 = W.Asinthe sum
of products illustration, in order to make the most efficient use of the S register, P2 is
used directly instead of summing by 0 to form S2.

The time to transform N points in a system is 16N + 6 cycles. The system can transform
approximately .94 million points per second at a clock rate of 15 MHz and 1.875 million
points per second at a clock rate of 30 MHz.

Operation with the Reduced Transform Matrix and Wh = 1

Because viewing transformations are frequently carried out using a single-vanishing-
point perspective, the 3 x 1 column that performs perspective transformations with
multiple vanishing points is often not used. Additionally, with W = 1, the 1 X 1 scale
factor is often equal to one. In these cases, the transform matrix takes the following form:

- O 0O

With multiple vanishing points, and in other graphics operations such as clipping, 4 X 4
matrices are used with nonzero values in the fourth column. The transform matrix is
termed "reduced" when its fourth column is the same as that previously shown. In such
cases, the transform of each point requires only 9 multiplications and 9 additions.

Table 83 shows part of the data flow for the reduced matrix program.

Table 83. Partial Data Flow for Product of [X, Y, Z, W] and Reduced
Transform Matrix

RA X Y Z x X Y Z x X
RB | A11 | A21 | A31 | A4l | A12 | A22 | A32 | A42 | A13
s S1(1) | s2(1) T
P P1(1) | P2(1) | P3(1) P1(2) | P2(2) | P3(2

P1() | P2(1) S1(1) | P1(2) | P2(2
Y X’
CLK 1 2 3 4 5 6 7 8 9

Again, the numbers in parentheses refer to the column of the transform matrix involved in
the operation. In this case, however, only the first three columns are used. Hence, for
1 =i=<3,Pl(j) =X xA1j, P2j) =Y x Apj, stc. S1¢) =P1g) + A4, S2(j) = P2(j)+ P3(i),
and Tj = S1(j) + S2(j). T1 = X', T2 = Y, T3 = Z'. Note that W values are not calculated
since they are all 1.
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The time to transform N points in a system is (12N + 5) cycles. The system can transform
1.25 million points per second at 15 MHz and 2.5 million points per second at 30 MHz.

Three-Dimensional Clipping

Once an image is transformed into viewing coordinates, it must be clipped so that lines
extending outside the view volume are removed. There are several approaches to
clipping, some more efficient than others. This section surveys the most commonly used
techniques and estimates the throughput of several single- and multi-processor
arrangements,

First considered is the technique of fully clipping the line segments to fit within the
viewing pyramid in the eye coordinate system. This technique is commonly referred to
as "clipping before division."

Clipping in the screen system is considered second. This method eliminates lines that
are obviously invisible in the eye system; the rest are clipped after projection to the
screen.

Clipping in the Eye System

If an object is composed of straight line segments and a perspective view is to be taken,
the viewing volume is a pyramid defined by the following plane equations:

X=KXZX=-KxZY=KXxZY=-Kx2Z

where K is a constant to be defined below. Thus, ~KZ < (X,Y) < KZ. Two other clipping
planes are usually employed at Z = N and Z = F, where N and F are the near and far
limits, respectively, of the view. This gives:

N<Z<F

Looking in the direction of the z-axis (see Figure 79), the eye can imagine a screen
located at a distance N from the eye. K is formed from the half-screen height divided
by N. A specific line segment might intersect any or all of the six clipping planes. One
common approach to this problem is to use six processors in a pipeline, each clipping
the line to one plane.
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2s x 2s
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Figure 79. Viewing Pyramid Showing Six Clipping Planes

Consider the case of clipping the line defined by the points P1 = (X1, Y1, Z1) and
P2 = (X2, Y2, Z2) against the Z = N plane. First computed are (Z1 = N)and (Z2 ~ N). If
both are negative, the line is invisible, and a notation meaning an empty line is passed
on. If both are positive, both ends of the line are on the visible side of the Z = N plane,
and the line is passed on unclipped.

When one of these computed values is negative and the other positive, the line must be
clipped and the new values for its endpoints passed down the rest of the pipeline. To do
so, a parameter t that indicates what fraction of a segment Z122, and therefore of P1P2
as a whole, lies on the P1 side of the Z = N plane, is computed as follows:

t= (21 - N/@Z1 - Z2).

In general, the value of the parameter is derived as described in Newman and Sproull,!
using the following equations of the line: X = X1 + (X2 — Xhu Y = Y1 + (Y2 — Yy
Z = 21 + (22 - Z1)u. These equations are each inserted into the corresponding plane
equation. In the current example, N = Z1 + (Z2 — Z1)t.

Since N is between Z1 and 22, tis always positive, and the signs of Z1 — Nand Z2 - N
are used to determine which end to clip. If Z1 — N is negative, the P1 end is clipped,
using the value of t to determine the delta in X1 and Y1. The coordinates for the new

endpoint of the shortened line segment are given by:

XI"=X1 + (X2 -X1) xt,YI’=Y1 + (Y2 - Y1) xt,Z1" =N.

1 Newman, W. M., and Sproull, R. F., Principles of Interactive Computer Graphics, McGraw-Hill, 1979.
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Similarly for the case when the P2 end must be clipped:
X2 =X1+(X2-X1) xt, Y2 =Y1 + (Y2 -Y1) xt Z2 =N,

An alternative to clipping to one plane at a time entails clipping to all six planes at once.
Both approaches are examined in the following sections.

Clipping to One Plane at a Time

When a pipeline of six processors is used, each clipping the same line to one plane,
each processor must wait for data from the previous processor and hold its solution until
the next processor is ready to receive it. There is no reason to seek shortcuts through the
computations by including branches in the program because there is little point in one of
the processors completing its task earlier than the rest. This statement is true whether
the six processors are driven from the same or from separate sequencers. Similarly,
operating the pipeline asynchronously buys little time. Synchronous operation in the
case of a clipping pipeline is likely to be almost as fast as, and much simpler and cheaper
than, asynchronous operation.

Because shortcuts are not beneficial, the program can be written assuming the
maximum amount of work will be required at each stage, whether the line requires
clipping at that stage or not. If it is assumed that invisible lines are caught and eliminated
as a separate, initial computation, branches from the clipping pipeline can be eliminated
entirely. An alternative approach, in which branches would be beneficial, involves using
two, three, or more 'ACT8837 or 'ACT8847 chips in parallel, rather than as a pipeline,
each performing all six stages of clipping for individual lines. The program lends itseif to
this approach because the computations in each stage of the clipping pipeline are
identical.

The method for clipping a line segment against the Z = N plane as one stage in a
clipping pipeline, assuming invisible lines have been previously eliminated, will be
illustrated. Two t values are computed — tq for clipping the P1 end of the line segment
and t2 for clipping the P2 end. £ Z1 < N, ty = @1 — N)/21 — Z2); otherwise, HH=0%K
22 < N, t2 = (Z2 - N)/(Z1 — Z2); otherwise, to = 0. The new endpoints for the line
segment are computed as follows:

X1" = X1 + (X2 — X1) x ty,
Y1 = Y1 + (Y2 - Y1) x 11,
21" =21 + (Z2 - Z1) x 14

X2' = X2 — (X2 ~ X1) x to,

Y2' = Y2 - (Y2 - Y1) x to,
22 =722 - (22 - Z1) x to.
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Note that the denominator is the same in the equations for t1 and to; it is this reciprocal
computation that is expensive in time. However, in the "ACT8837, it is also simple to
interleave other computations with that of the reciprocal, and in the '8847, the built-in
divide is very fast.

A simple trick is used to compute the tj values in a streamlined fashion. Hj = (Zj - N) is
first computed, followed by the sum H;' = H;j — |H;j|. Note that if (Zi — N) is negative,
Hi’ = 2Hj = 2(Zi — N); otherwise, Hj’ = 0. Hence, in a straightforward manner, a suitable
numerator for tj has been computed, regardiess of the sign of (Zi — N). This approach
avoids resorting to an "if/then" decision to compute t;.

To scale the denominator to the numerator, D = 2(Z1 —Z2) is computed, and the
Newton-Raphson algorithm in the "8837 or the built-in divide instruction in the '8847 is
used to determine the values of 1/D, t1 = |H1/ D|, and to = |H2/ D|. New values of
(X1, Y1, Z2) and (X2, Y2, Z2) are then computed using t1 and t2.

The data flow and program listing for the clipping against Z = N operation as per-
formed on the 'ACT8837 are given in Tables 84 and 85. Here, t = |(H; — |Hj[)/D|. Also,
d=21-22 H{ =21 - N, H{’ = H{ — |H{|, H2 = H2 — |H2|, Rj = successive
approximations for 1 /d, Ti = (2 — d x Rj), and R(j + 1) = Ti x R;.

Table 84. Data Flow for Clipping a Line Segment Against the Z = N Plane
Using the SN74ACT8837

CRANTYIYIYIYIN] ¥ IN[Y[Y[Y Y] Y [Y]Y NN
RA |z1|z1|Z2|RO x2[v2] d H1'|H2'
RB |Z2|N[N]|d RINZ 0-8
s d [H1|H2| RO |H1'|TO [H2' (%8~ [Y2~| R1 T
X1 | Y1
P dxRo| |Ro| |Ri axmt| %S| |o
C H1| H2 |H2 1D
) X2- Y2
Y d Hr| M2 e
STATUS
CK 112 |3l4]5] 6 |78 91011 12 [13] 14 [15]16]17
CRAIN | Y Y Y Y Y Y Y v
X2- | (Ya— | @2- X2— | (Y- | @2-
RA 1 %y | vy | z1) X1 | vy | z1
RB X1 | v1 | Z1 X1 | Yi_| 7
S 2 | xt' | Yi' |zt X2 | 22 | Z2
®2— | (Y2— | 22— X2— | (Y2- | @Z2-
P t 2 1% | vy | 21 x1) | Yy |z
xt1 xt1 xt1 xt2 xt2 xt2
c 1 11 2 | © | ©
Y XT | YU | Z1’ X2 | Y2 | z2
STATUS
CLK | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28
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Table 85. Program Listing for Clipping a Line Segment Against the Z = N Plane
Using the SN74ACT8837

MULTIPLIER
REGISTER TRANSFERS ALU OPERATION | ooecnme
1. LOAD RA, RB Y«S ADD (RA,—RB)
2. LOADRA, RB ADD (RA,—RB)
3. LOADRA, RB ADD (RA,—RB)
4. LOAD RA, RB; C«S ADD (RA,0) MULT(RA RB)
5. LOADRA,RB Y+«S C«S ADD (C,-[C))
6. ADD (2,~P) MULT(S.))
7. Y-S ADD (C,-[C)
8. LOADRARB Y+S ADD (RA,-RB) MULT(S.P)
9. Y+S ADD (RA,—RB)
10.  LOAD RA ADD (P,0) MULT(RA,P)
11.
12.  LOAD RB ADD (2,-P) MULT(S,RB)
13.
14, MULT(S,P)
15.
16.  LOAD RA C«P MULT(RA|P|)
17. LOAD RA MULT(RALC])
18.  LOAD RA C+P MULT(RA,P)
19.  LOAD RA ADD (P,0) MULT(RA,C)
20. LOADRA,RB  Y«S$S ADD (P,RB) MULT(RA,C)
2. LOADRA,RB Y«S C«S ADD (P,RB)
22. LOADRA,RB  Y+S$S ADD (P,RB) MULT(RA,C)
23.  LOAD RA, RB MULT(RA,C)
24, LOAD RB Y8 ADD (P,RB) MULT(RA,C)
25.  LOAD RB Y-S ADD (P,RB)
26. Y+$S ADD (P,RB)
27.
28.

In pipelined mode, computing (Z1 — Z2) takes 2 cycles. This value is passed off-chip and
used to get the first approximation to 0.5/(21 — Z2) from an 8-bit seed ROM. lteration to
correctly determine the value begins in the 4th cycle, with subsequent operations
starting on even-numbered cycles. The computations of H1* and H2’ are interleaved with
the divide algorithm and are completed before it.

(X2 — X1), (Y2 — Y1), and (22 — Z1) are also computed during the divide. The values of
t1 and to are ready in steps 18 and 19. New values of X1, X2, Y1, Y2, Z1, and Z2 are all
computed and output by step 28. Each chip, therefore, clips against one clipping plane
in 28 cycles. With a two-cycle overlap, the next line segment can be presented in cycle
26.
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For the two X and two Y clipping planes, the calculations are slightly more complicated.
Forthe X = KZ plane, the two parameters tj are defined in terms of the values W1 = KZ4,
Wo = KZo and H1 = Wq — X1, Ho= W2 — X2 as follows:

t1 = |H{’/2(Hy — Hg)| and t2 = [H2/2(H1 — H2)|,

where, as before, Hi' = Hj — |Hj|. The equations for the new endpoints, (X1°, Y1’, Z1)
and (X2, Y2, Z2'), are the same as before. It is still possible to compute the new
endpoints in under 30 cycles. At 15 MHz, a six-chip '8837 system would clip 577,000 line
segments per second.

In the '8847 a similar process is employed, but the built-in divide instruction is used
beginning in step 7 and ending in step 15. t1 and t2 are calculated by step 18, and the
entire operation completes in step 27, one cycle shorter than for the '8837. The data flow
is shown in Table 86. A six-processor '8847 system operating at 30 MHz would clip
1.2 million line segments per second with a new operation beginning every 25 cycles.

Table 86. Data Flow for Clipping a Line Segment Against the Z = N Plane
Using the SN74ACT8847

RA | 21 | 21 [ 22 [ X2 05 ] Y2 [HI' [ H2

RB | zZ2 | N | N | X1 d | Y1 SAME AS FOR
X2— , , Y2 ‘8837

s d | Ht | H2 |27 | HI' | H2 o

P 1/D 11 [ 12

Cc Hi | H2 1/D t1_|STEPS
X2— , , Y2- 20

M d x1 | H1" | H2 Y1 THRU

STATUS 28
ClK | 1 | 21 34567 ] 8 [ 14]15]16[17[18

Since the performance levels obtained from the six-chip systems described below are
slower than the rate of endpoint transformation by a single-chip system, some further
speed improvement is desirable. Hence, rather than going through the code for clipping
to the X and Y planes, another approach is proposed.

Clipping to All Six Planes at a Time

The "window edge clipping method" derived in Newman and Sproull can be used to clip
to all six planes at once. Recall that the viewing volume for a perspective view is a
pyramid defined by the following plane equations:

X=KxZX=-KxZY=KxZY=-KxZ Z=N,Z=F,
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where K = S/N, as defined in a previous section. Given a segment with endpoints
P1 = (X1, Y1, Z1) and P2 = (X2, Y2, Z2), to perform the entire clipping operation on all
six planes at once, the following two six-tuples must be computed:

Q = (W1+X1, W1-X1, Wi+Y1, Wi-Y1, Z1=N, F-Z1) = (Q1, Q2,. . ),
R = (W2+X2, W2-X2, W2+Y2, W2-Y2, Z2—-N, F-22) = (R1, R2,. . ),

where Wq = KZ1 and Wo = KZo.

Consider the case where X1 < —W1, Then, W1 + X1 < 0;i.e,, Q1 < 0. In general, a
negative element of Q indicates that P1 is on the invisible side of one of the clipping
planes, while a negative element of R indicates the same for P2. To clip the line, the six
parameters tj for clipping the P1 end and the six parameters s; for clipping the P2 end are
computed. Here, ti20=20Q;/(Q; — R;) and s; = Ri/(Rj—Qj). (Again, the equations of the
line as described in Newman and Sproull are used).

For example, to find the value t{ for clipping P1 to the X = —W = —KZ plane, the
following equation is used:

X1 + (X2 — X))ty = —K[Z1 + (22 - ZI)Yq).
Solving for t4,

ty = (X1 + WI)/[(X1 + W1)—(X2 + W2)] = Q1 /{(Q1 - R1).
In general, tj = Q;/(Qj — Rj). Similarly, sj=Rj/(Rj—Q;).

To actually carry out the computations of tj and sj, the trick discussed above is
performed, and each element of Q and R is replaced with the difference of the element
and its absolute value, to form Q' and R'. That is,

Q' =2xQjif Qj < 0, and Qj = 0 otherwise.
R = 2 x Rjif Rj < 0, and Rj’ = 0 otherwise.

Next calculated is tj = Qj'/[2(Qj — Rj)] and sj = Rj'/[2(Rj—Q;)], followed by T1 = MAX(t;)
and T2 = 1 — MAX(sj). The P1 end is clipped using T1 and the P2 end is clipped using
T2.

.

In an ‘8837 three-processor parallel system, in which each processor is given the task of
computing two tj and two sj values, computing the Qj’' and Ry’ values takes 14 cycles,
with the values of Q; — Rj computed by step 13. The six divides, 0.5/(Qj — R;), are
completed in step 30, assuming an 8-bit seed ROM is used. The max/min operations
take place in parallel in two processors and complete at step 54 (24 + 30), and the new
endpoints are ready by step 60 (6 + 54). The timing is the same using the '8847.

The data fiow and program listing for computing t1, to, s1, and s2 by one of the three
'8837 processors is given in Tables 87 and 88.
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Table 87. Data Flow for Computing t{, to, s1, and s2 Using an SN74ACT8837

CHAIN Y Y Y Y Y N N N Y Y
RA K K w2 Q1
RB Z1 z2 X1 X1 X2 X2 R1

S Q1 Q2 R1 Qr Q2 R1’
P Wi W2
c w1 W2 Q1 Q2 R1
Y Qr Q2' R1’
STATUS
CLK 1 2 3 4 5 6 7 8 9 10

CHAIN Y N Y Y Y Y Y Y Y Y
RA Q2 RO
RB R2 di

S R2_ | Q1—-R1 | Q2-R2 | R2 RO T0

P dxR0 RO R1
c R2

Y Q1-R1 | Q2—-R2 | R2

STATUS
CLK 11 12 13 14 15 16 17 18 19 20

CHAIN Y Y Y Y Y Y Y Y N N

RA Qr Q2 R1’

RB 0-8 R2

S R1 T1 1/D2

P dxR1 O-SR1 1/D1 | 1/D2 t 2 S1 s2
Cc 1/D1 | 1/01

Y H 2 81 S2

STATUS
CLK 21 22 23 24 25 26 27 28 29 30

NOTE: Cycles 13, 15, 17, 19, .. . ,25 compute 1/D1 = 0.5/d1;
Cycles 14, 16, 18, 20, . . . ,26 compute 1/D2 = 0.5/d2, di = Qi — Ri.
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Table 88. Program Listing for Three-Processor Clip to Compute t4, t2, s1,

and s3 Only
MULTIPLIER
REGISTER TRANSFERS ALU OPERATION OPERATION
1. LOAD RA, RB MULT (RA,RB)
2. LOAD RA, RB MULT (RA,RB)
3. LOAD RB CP ADD (P,RB)
4, LOAD RB C«P ADD (C, ~-RB)
5. LOAD RB C-S ADD (C,RB)
6. Y<S C«S ADD (C,-|C))
7. Y—S C«$§ ADD (C,-[C))
8. Y«S ADD (C,—|C))
9. LOAD RA, RB ADD (RA,~RB)
10. LOAD RA,RB  Y«$§ ADD (RA,—RB)
11. LOADRB,RB  Y«S C«S8 ADD (RA,-RB)
12, Y«S ADD (C,~-|C))
CODE FOR TWO DIVISIONS
25. LOAD RA Y-S CP MULT (RA,P)
26. LOAD RA Y«$ ADD (P,0) MULT (RA,P)
27. Y8 MULT (RA,C)
28. Y8 MULT (S,RB)

This approach facilitates the transform of 288,000 line segments per second in a 3-chip
'8837 system running at 15 MHz and 576,000 line segments in an '8847 system running
at 30 MHz. If branches are permitted in the sequencer, a considerable speedup is
available for situations in which a large proportion of line segments are either invisible,
and may be eliminated, or are completely visible, and may be passed without clipping. A
single-processor system takes no more than 32 cycles, sometimes as few as 10 cycles,
to reject an invisible line, whereas it takes 91 cycles to process lines that need both ends
clipped. Hence, in a situation where 50% of the line segments are invisible, the speed is
in excess of 360,000 line segments per second at 20 MHz and 540,000 segments/
second at 30 MHz. It is not uncommon for 80% of lines to be invisible, in which case the
speed would increase to 584,000 line segments at 20 MHz and 877,000 line segments at
30 MHz,

To take advantage of this speedup, the only change in the sequence given above is that
while computing Q and R, the logical AND and OR is formed for the signs of the
corresponding pairs of values, Qj and R;. This is best performed off-chip if the '8837 is
being used but may be done using independent ALU (unchained) mode in the '8837 ora
logical operation in the '8847. For the '8837, with two operands Qj and R;, Table 89
shows the A > B status bit foran A > B comparison on A=~Qjx |Rj| and B = |Q;j| x R;
for all signs of Q; and R;.
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Table 89. A > B Comparison Function Table

SignQ | SignR; |[SlgnA = -Q; x R/ SignB =|Q xR | A>B | A=B
- - + - T F
- + + + F T
+ - - - F T
+ + - + F F

The A > B status provides the needed AND function of the sign bits of Q; and R;. In
computing these A > B values, if A > B is TRUE, the sequencer branches to code that
rejects the line as invisible. A comparison A > B of A = (Qj x |Rj|) and B = (|Qj] x R}
gives the logical AND of the complement of the sign bits. It is TRUE when both Qj and R;
are positive. If all six values are TRUE, the sequencer can branch to code that passes the
line segment unclipped.

For a three-processor parallel system, lockstep operation with a single sequencer is still
possible since all three processors are working on the same line segment, and the
branch options apply equally to them all. The estimated time for a three-processor
system is 56 cycles; not much interleaving is possible.

Now that the operations have been reduced to a minimum, the remaining steps are
necessarily sequential. Rejecting invisible or passing totally visible fine segments without
division, however, is still beneficial.

Clipping in the Screen System

In most graphics systems, full line clipping is not performed in the eye system. Instead, a
trivial accept/reject test is performed, in which the line segments are simply tested
against the six clipping planes. If a line has both ends on the invisible side of any one of
the clipping planes, it is rejected. Lines surviving this test may still be outside the viewing
pyramid. In any case, the lines are transformed to the screen coordinate system and
then clipped against a cube defined by the simple plane equations -1 < (X,Y,2) < 1.
The next three sections describe this process.

Trivial Accept/Reject Test

In the eye system, the clipping planes are:

X=W,X=-W,Y=W,Y=-W,Z=N,andZ=F,
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where W = K x Z. After —W1 and ~W2 are computed, a sequence of comparison
operations are performed, summarized as follows:

with X1 in RB and -W1inP, P > RB (i.e., -W1 > X1)
with X1 in RA and -W1in C, RA > [C| (i.e., X1 > W1)
withYiinRBand -W1inC, C > RB

with Y1 in RA, RA > |C| comparison
with Z1 in RB and N in RA, RA > RB (i.e. N > Z1)
with Z1 in RA and F in RB, RA > RB (i.e.,, Z1 > F).

These six operations are carried out in successive cycles and then repeated for (X2, Y2,
Z2). The two six-tuples are saved off-chip and a bit-wise AND is carried out. If any one of
the resulting six boolean values is TRUE, the line is rejected. This entire operation takes
only 16 cycles, thereby providing a speed of 1,071,000 line segments per second at
15 MHz and 2,143,000 line segments per second at 30 MHz. The data flow for an accept/
reject test is given in Table 90. Accept/reject testing of individual points takes only

8 cycles.
Table 90. Data Flow for Accept/Reject Testing
CHAIN { N [ N Y Y Y Y Y Y Y Y Y Y Y Y N N
RA K| K X1 Y1 N Zt [-W2| X2 | -w2 | 11 N z2
RB 21122 ] Xt Y1 21 F X2 1-w2| T -w2 Z2 F
s
P -Wi|-w2
[o] -W1|-W1[ -W1 |-W1
Y ~-W2
STATUS 2% x> [ S s wa N> z1jzr > F| 252 [xe> wa| 192 | vas we N> z2fz2>F
CLK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 116

Transformation to the Screen System

7 After the line segments have passed the trivial accept/reject test, they are transformed to
the screen coordinate system. The following transformation is first applied to the Z

coordinate in order to scale its clipping planes to Z = -W, and Z’ = W
Z=[-Wx (F+ NI/ -N) +(2xWx Z)/(F - N).

The value of 1/(F — N) is constant for all line segments and is therefore computed only
once. In fact, two constants, a = 2K/(F ~ N) and b = —(F + N)/2, can be available so that
Z =Z x a x (b + 2Z). (Note that other transformations on Z can also be used.)

After the trivial accept/reject test, the following transformation to the screen system
occurs:

LY88LIVYLNS

Xs = X/W, Ys = Y/W, ZS = Z'/W
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The clipping planes then have these equations:
Xs = -1, Xs=1,Yg=-1,Yg=1,Zg=-1,2Zg =1

21’ and Z2’ can be formed in 8 cycles. Only two reciprocals, 1/W1 and 1/ W2, need to be
computed, and they can be interleaved and completed in 13 cycles in an '8837 it an 8-bit
seed ROM is employed and in 12 cycles in an '8847. The line segment is transformed to
the screen system in a further 6 cycles. The total is 26 cycles for the 'ACT8847 and
27 cycles for the 'ACT8837. A single-processor system would transform 600,000 line
segments per second with a 15 MHz clock and 1.2 million line segments per second at
30 MHz.

Note that the above projection does not preserve planarity. See Newman and Sproull for
perspective projections that do preserve planes.

The Clipping Operation

The final operation on line segments is to clip them to the cube:
XS= 1,XS= '—1,Ys= 1,YS= —1,Zs= 1 andZs= -1.

It is important to realize that the required resolution of Xg, Yg and Zg may only be 10 or
11 bits. Any divisions needed in an ‘8837 implementation at this stage could feasibly be
done entirely by table look-up. it would certainly not be necessary to perform more than
one iteration if an 8-bit seed ROM is employed. Two divisions can therefore be
interleaved and completed in 7 cycles. However, three iterations are assumed in this
example to give full single-precision accuracy.

Consider a three-processor pipeline, with each processor clipping against two parallel
planes. The first will clip against the x planes —1 < X < 1. For clipping the P1 end of the
line segment, Q = (1 + X1, 1 — X1) is computed and Q' is formed, where Q' = Qj— | Qj].
l.e.,

Q1 = 2(1 + X1), if (1 + X1) < 0; Q1" = 0 otherwise.
Qo' =2(1 — X1),if (1 = X1) < 0; Q2" = 0 otherwise.

At least one of Qj will be zero; the other will be negative. Hence, MIN(Q1’, Q2)) = Q1’
+ Qo = [(1 + X1) = 1 + X1]] +[(1 = X1) — [1=X1[}. Therefore, MIN@Q¢’, Q2) = (1
- X1) = |1 = X1l So, t = |(m{—|mq)) / 2d| and s = |(m2—|m2)) / 2d|, where
mj = 1 — |Xi|, and d = X1 — X2. Note that only one reciprocal is required per processor.

A three-processor parallel system would have each processor work on one dimension,
supplying its pair of max parameters to a "second stage." The second stage would
receive (tx, sx), (ty, sy), (tz, sz) from the above system, compute max(t) = T and
max(s) = S, and then clip the line as before:

X1 = X1 + (X2 — X)T,
X2 = X2 - (X2 — X1)S.
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The data flow and program listing for the program run by a processor working on the
X dimension are given in Tables 91 and 92.

Tahle 91. Data Flow for the X Processor

CHAINT Y [NIY |Y [N Y N[Y]Y]|]Y]Y Y Y Y
RA X1] | | {RO d
RB X2 |1X1[X21d 0.5
S dmim2j RO In1]|TO|n2 R1 T1
P dxR0O RO R1 dxR1 0.5R1
o] mi| m2 [m2
Y d ni n2

STATUS
CLK 1[2]3|415 6 71819 1011 ] 12 {13 14

CHAINJ Y [N[N{Y Y
RA nl | n2
RB
S
P 1/D t | s
C 1/D
Y t S
STATUS
CLK 1516 |17 (18|19 20 [21[22 |23 |24 |25 26 [27 | 28

NOTE: d = X1 — X2; nj = mj — |mj|

Table 92. Program Listing for the X Processor

MULTIPLIER
REGISTER TRANSFERS ALU OPERATION | oo 8
1. LOAD RA, RB Y<S ADD (RA,—RB)
2. LOAD RA, RB ADD (RA,—RB)
3. LOAD RA, RB ADD (RA,—RB)
4. LOAD RA, RB ADD (RA,0) MULT (RA,RB)
5. Y8 ADD (C,-|[C))
6. ADD (2,—P) MULT (S.1)
7. Y-S ADD (C,—|C})
8. MULT (S.P)
9.
10. LOAD RA ADD (P,0) MULT (RA,P)
11.
12. LOAD RB ADD (2,~P) MULT (S.RB)
13.
14. MULT (S.P)
1.
16. LOAD RA Y+P MULT (RAP)
17. LOADRA YeP MULT (RA,P)
18.
19.
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The three-processor parallel clipping system operates on a fixed loop of 17 instructions
and can therefore clip 0.88 million line segments per second at 15 MHz and 1.76 million
line segments per segment at 30 MHz. The second stage could not keep up with this
rate without being implemented as several processors. A single processor can form
the two max values in 23 cycles (a loop of 21 cycles) while two processors would take
only 12 cycles (a loop of 10). The final clipping of the two endpoints takes about
11 cycles (a loop of 9 cycles).

To summarize, the fastest clipping system operates in the normalized screen coordinate
system. It has six processors arranged in three stages — a three-processor parallel
system with each processor working on each dimension; a two-processor system to
form the two max values; and a single-processor third stage to clip the endpoints. The
combined speed would be equal to that of the first stage, as previously described. A
slightly slower four-processor system would use one processor for computing the two
max values in the second stage.

Summary of Graphics Systems Performance

The previous section considered several approaches to the design of computer
graphics systems based on the ’ACT8837 and the *ACT8847. Table 93 summarizes the
results. Table 94 shows the options available in combining the sub-systems listed in
Table 93 into a design for a graphics system.

Table 93. Summary of Graphics Systems Performance

SPEED AT 30 MHz
1.875 M points/s
2.5 M points/s
1.2 M lines/s
0.576 M lines/s
2.143 M lines/s
1.76 M lines/s

SPEED AT 15 MHz
0.94 M points/s
1.25 M points/s
0.577 M lines/s
0.288 M lines/s
1.071 M lines/s

0.88 M lines/s

SUB-SYSTEM
a Transform, 4x4 matrix, 1 ACT88X7 cycle
b Transform, 3x3 matrix, 1 ACT88X7 cycle
¢ Eye clipping pipe, 6 ACT88X7 cycles
d Eye clipping 3 ACT88X7 cycles
e Eye Accept/Reject test 1 ACT88X7 cycle

f Screen clipping

5 ACT88X7 cycles

g Screen clipping

4 ACT8B8X7 cycles

0.71 M lines/s

1.42 M lines/s

Table 94. Avalilable Options for Graphics System Designs

SYSTEM SPEED AT 15 MHz | SPEED AT 30 MHz
1 (aorb) +c, 7 ACT88X7 cycles 0.577 M lines/s 1.2 M lines/s
i (aorb) + d, 2 ACT88X7 cycles 0.288 M lines/s 0.576 M lines/s
Il (@aorb) +f, 6 ACT88X7 cycles 0.88 M lines/s 1.76 M lines/s
IV 2x{aorb) +c+ g, 7 ACT88X7 cycles 2.5 M lines/s 3.75 M lines/s

In the fourth system, it is assumed that 2 processors are used for the transform of
endpoints so as to balance the high clipping rate. It is also assumed that the accept/
reject stage will eliminate more than 60% of the line segments so that the clipping system
can keep up with the transform processors.
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