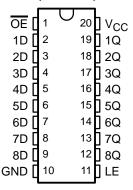
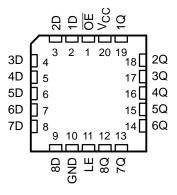
SN54AHCT573, SN74AHCT573 OCTAL TRANSPARENT D-TYPE LATCHES WITH 3-STATE OUTPUTS

SCLS243N - OCTOBER 1995 - REVISED JULY 2003

- Inputs Are TTL-Voltage Compatible
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)


description/ordering information

The 'AHCT573 devices are octal transparent D-type latches. When the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. When LE is low, the Q outputs are latched at the logic levels of the D inputs.


A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

SN54AHCT573 . . . J OR W PACKAGE SN74AHCT573 . . . DB, DGV, DW, N, NS, OR PW PACKAGE (TOP VIEW)

SN54AHCT573 . . . FK PACKAGE (TOP VIEW)

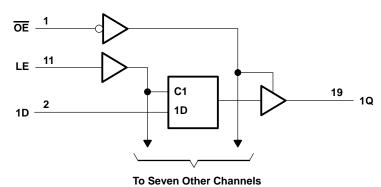
OE does not affect the internal operations of the latches. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

ORDERING INFORMATION

TA	PACK	AGE†	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	PDIP – N	Tube	SN74AHCT573N	SN74AHCT573N
	SOIC - DW	Tube	SN74AHCT573DW	AHCT573
	30IC - DW	Tape and reel	SN74AHCT573DWR	AUC13/3
-40°C to 85°C	SOP - NS	Tape and reel	SN74AHCT573NSR	AHCT573
-40 C to 65 C	SSOP – DB	Tape and reel	SN74AHCT573DBR	HB573
	TSSOP – PW	Tube	SN74AHCT573PW	HB573
	1330F = FW	Tape and reel	SN74AHCT573PWR	110073
	TVSOP - DGV	Tape and reel	SN74AHCT573DGVR	HB573
	CDIP – J	Tube	SNJ54AHCT573J	SNJ54AHCT573J
–55°C to 125°C	CFP – W	Tube	SNJ54AHCT573W	SNJ54AHCT573W
	LCCC – FK	Tube	SNJ54AHCT573FK	SNJ54AHCT573FK

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



SCLS243N - OCTOBER 1995 - REVISED JULY 2003

FUNCTION TABLE (each latch)

	INPUTS		ОИТРИТ
ŌE	LE	D	Q
L	Н	Н	Н
L	Н	L	L
L	L	Χ	Q_0
Н	X	Χ	Z

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}		
Output voltage range, V _O (see Note 1)		
Input clamp current, I_{IK} ($V_I < 0$)		
Output clamp current, I _{OK} (V _O < 0 or V _O > V _C		
Continuous output current, $I_O(V_O = 0 \text{ to } V_{CC})$		
Continuous current through V _{CC} or GND		±75 mA
Package thermal impedance, θ _{JA} (see Note 2)): DB package	70°C/W
	DGV package	92°C/W
	DW package	58°C/W
	N package	69°C/W
	NS package	60°C/W
	PW package	
Storage temperature range, T _{stg}		–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
 - 2. The package thermal impedance is calculated in accordance with JESD 51-7.

SCLS243N - OCTOBER 1995 - REVISED JULY 2003

recommended operating conditions (see Note 3)

		SN54AHCT573		SN74AH	CT573	UNIT
		MIN	MAX	MIN	MAX	UNIT
VCC	Supply voltage	4.5	5.5	4.5	5.5	V
VIH	High-level input voltage	2		2		V
VIL	Low-level input voltage		0.8		0.8	V
٧ _I	Input voltage	0	5.5	0	5.5	V
٧o	Output voltage	0	Vcc	0	VCC	٧
IOH	High-level output current		-8		-8	mA
loL	Low-level output current		8		8	mA
Δt/Δν	Input transition rise or fall rate		20		20	ns/V
TA	Operating free-air temperature	- 55	125	-40	85	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	Voc	T,	\ = 25°C	;	SN54AH	CT573	SN74AHCT573		UNIT	
PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNII	
Vou	I _{OH} = -50 μA	4.5 V	4.4	4.5		4.4		4.4		V	
VOH	$I_{OH} = -8 \text{ mA}$	4.5 V	3.94			3.8		3.8		V	
VOL	I _{OL} = 50 μA	4.5 V			0.1		0.1		0.1	V	
VOL	$I_{OL} = 8 \text{ mA}$	4.5 V	0.36		0.44		0.44		V		
lį	$V_I = 5.5 \text{ V or GND}$	0 V to 5.5 V			±0.1		±1*		±1	μΑ	
loz	$V_O = V_{CC}$ or GND	5.5 V			±0.25		±2.5		±2.5	μΑ	
Icc	$V_{I} = 5.5 \text{ V or GND}, I_{O} = 0$	5.5 V			4		40		40	μΑ	
ΔI _{CC} †	One input at 3.4 V, Other inputs at V _{CC} or GND	5.5 V			1.35		1.5		1.5	mA	
C _i	V _I = V _{CC} or GND	5 V		2.5	10				10	pF	
Co	$V_O = V_{CC}$ or GND	5 V		3						pF	

^{*} On products compliant to MIL-PRF-38535, this parameter is not production tested at $V_{CC} = 0 \text{ V}$.

timing requirements over recommended operating free-air temperature range, V_{cc} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

		T _A = 25°C		25°C SN54AHCT573		SN74AHCT573		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	UNIT
t _W	Pulse duration, LE high	5		5		5		ns
t _{su}	Setup time, data before LE↓	3.5		3.5		3.5		ns
t _h	Hold time, data after LE↓	1.5		1.5		1.5		ns

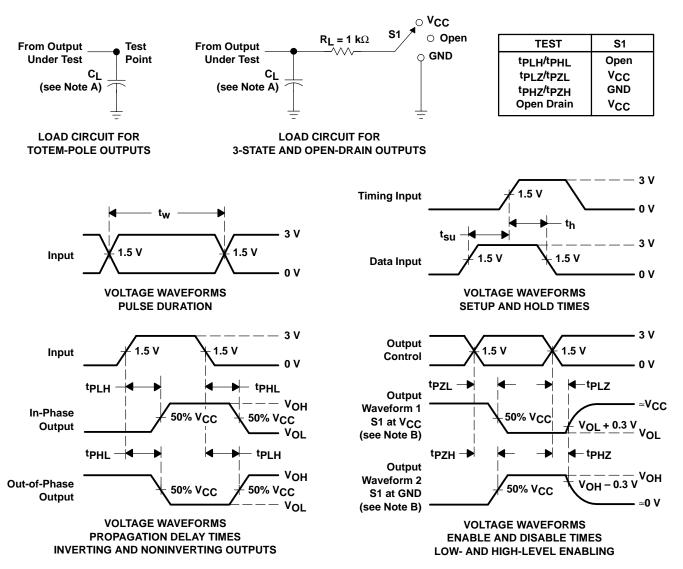
[†] This is the increase in supply current for each input at one of the specified TTL voltage levels, rather than 0 V or VCC.

SN54AHCT573, SN74AHCT573 OCTAL TRANSPARENT D-TYPE LATCHES WITH 3-STATE OUTPUTS

SCLS243N - OCTOBER 1995 - REVISED JULY 2003

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

DADAMETED	FROM	то	LOAD	TA	= 25°C	;	SN54AH	CT573	SN74AH	CT573	UNIT									
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNII									
^t PLH	D	Q	C _I = 15 pF		4.2*	6*	1*	6.5*	1	6.5	ns									
^t PHL	Ь	ď	CL = 13 pr		5.1*	7*	1*	9*	1	9	115									
^t PLH	LE	Q	C _L = 15 pF		4.7*	6.5*	1*	7.5*	1	7.5	ns									
^t PHL	LL	ď	CL = 13 pr		5.6*	7.5*	1*	9*	1	9	115									
^t PZH	ŌĒ	Q	C _L = 15 pF		4.1*	6.5*	1*	7*	1	7	ns									
t _{PZL}	OE	ď	CL = 13 pr		5.5*	7.5*	1*	10*	1	10	115									
t _{PHZ}	ŌĒ	0	Q C _L = 15 pF		5.5*	8*	1*	11*	1	11	9.5 ns									
t _{PLZ}	OE	ď			5.4*	8*	1*	9.5*	1	9.5										
^t PLH	D	Q	C _L = 50 pF		5.2	7	1	7.5	1	7.5	ns									
^t PHL	Ь	Q	CL = 30 pi		6.1	8	1	10	1	10	115									
^t PLH	LE	Q	C _L = 50 pF		5.7	7.5	1	8.5	1	8.5	ns									
^t PHL	LL	Q	CL = 30 pi		6.6	8.5	1	10	1	10	113									
^t PZH	OE Q	= 0	C _L = 50 pF		5.1	7.5	1	8	1	8	ns									
^t PZL	OE	ď	CL = 30 pr		6.5	8.5	1	11	1	11	115									
^t PHZ	ŌĒ	Q	C _L = 50 pF		6.7	9	1	12	1	12	ns									
^t PLZ	OE	3	3		γ	Š]	3	3	γ	3	Q OL = 30 pi		6.4	9	1	10.5	1	10.5	113
tsk(o)			C _L = 50 pF			1.5**				1.5	ns									

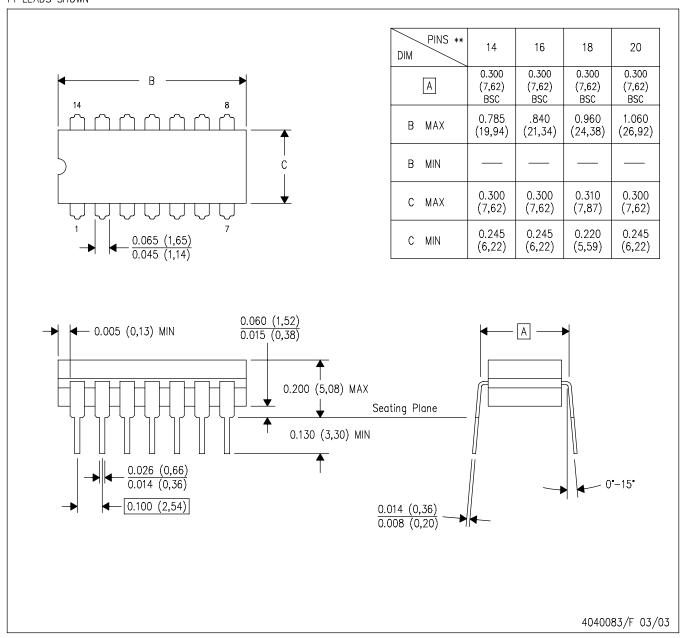

^{*} On products compliant to MIL-PRF-38535, this parameter is not production tested.

operating characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

	PARAMETER	TEST C	ONDITIONS	TYP	UNIT
Ī	C _{pd} Power dissipation capacitance	No load,	f = 1 MHz	16	pF

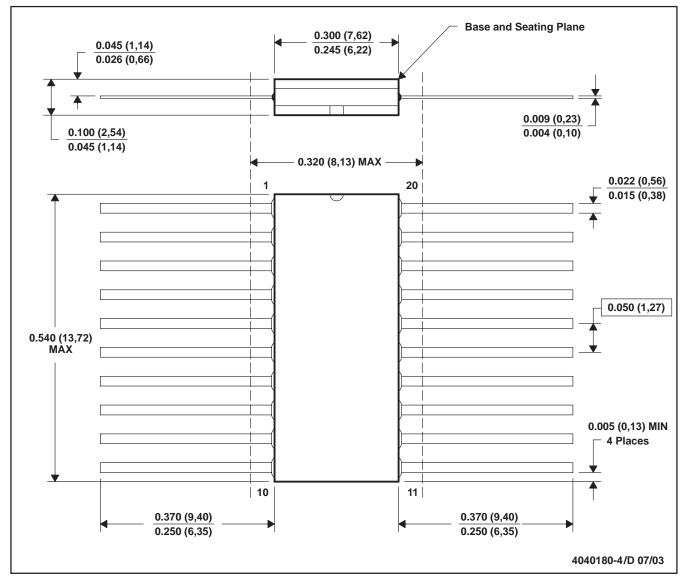
^{**} On products compliant to MIL-PRF-38535, this parameter does not apply.

PARAMETER MEASUREMENT INFORMATION


NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_Q = 50 \Omega$, $t_f \leq$ 3 ns, $t_f \leq$ 3 ns.
- D. The outputs are measured one at a time with one input transition per measurement.
- E. All parameters and waveforms are not applicable to all devices.

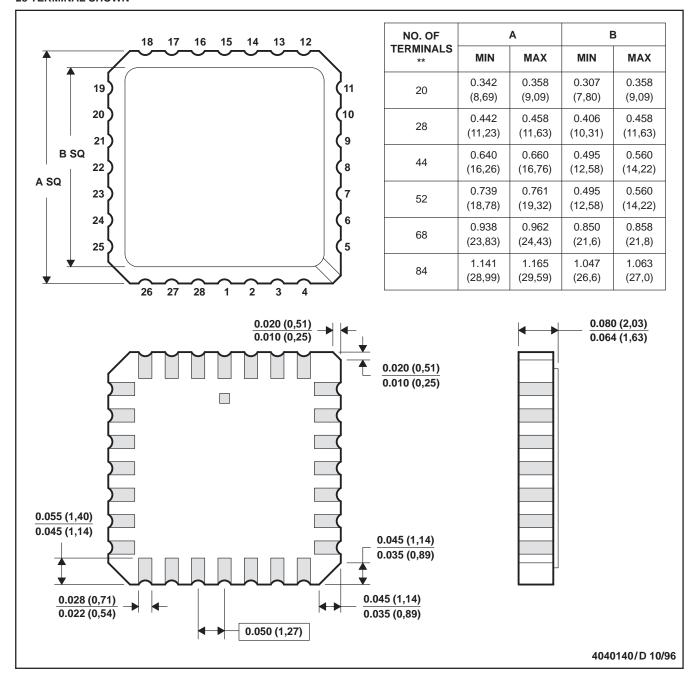
Figure 1. Load Circuit and Voltage Waveforms


14 LEADS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F20)

CERAMIC DUAL FLATPACK


NOTES: A. All linear dimensions are in inches (millimeters).

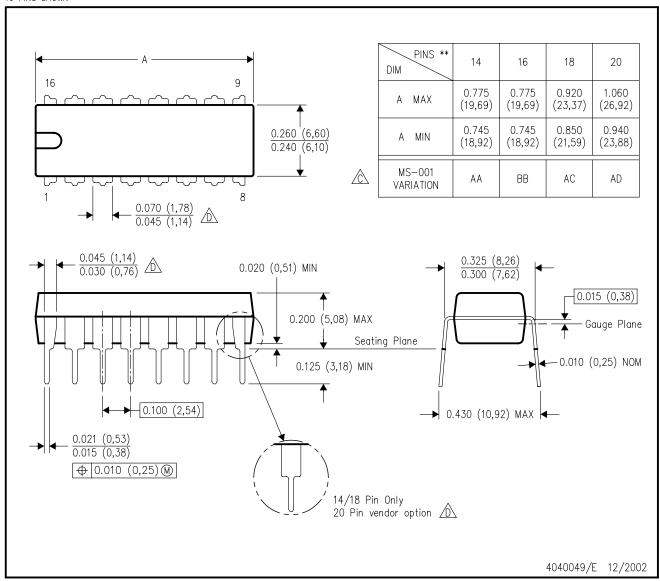
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within Mil-Std 1835 GDFP2-F20

FK (S-CQCC-N**)

28 TERMINAL SHOWN

LEADLESS CERAMIC CHIP CARRIER

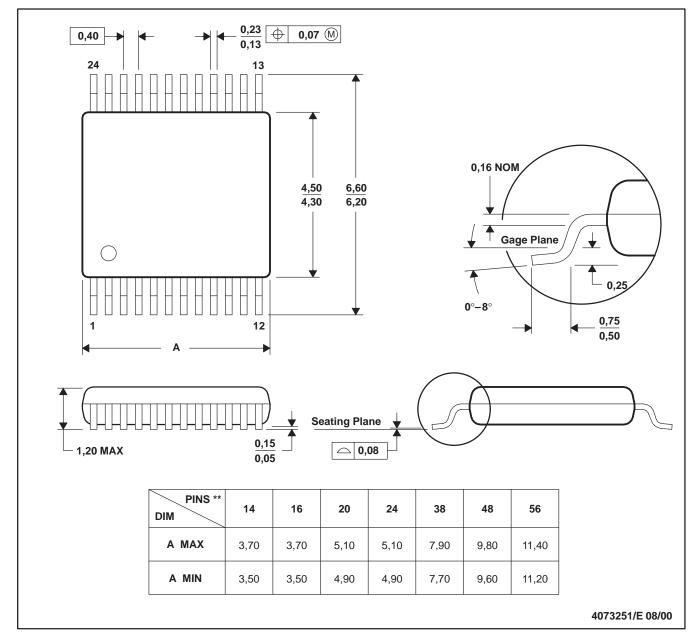
NOTES: A. All linear dimensions are in inches (millimeters).


- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. The terminals are gold plated.
- E. Falls within JEDEC MS-004

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

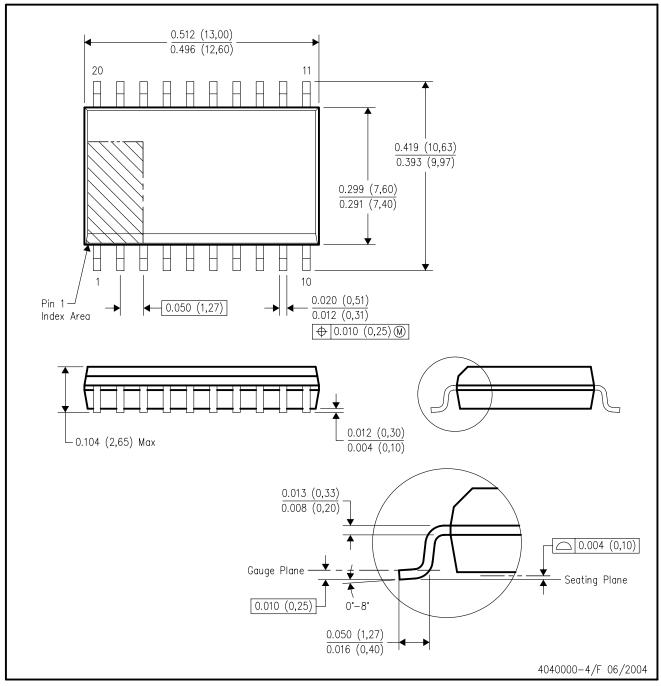
DGV (R-PDSO-G**)

24 PINS SHOWN

PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

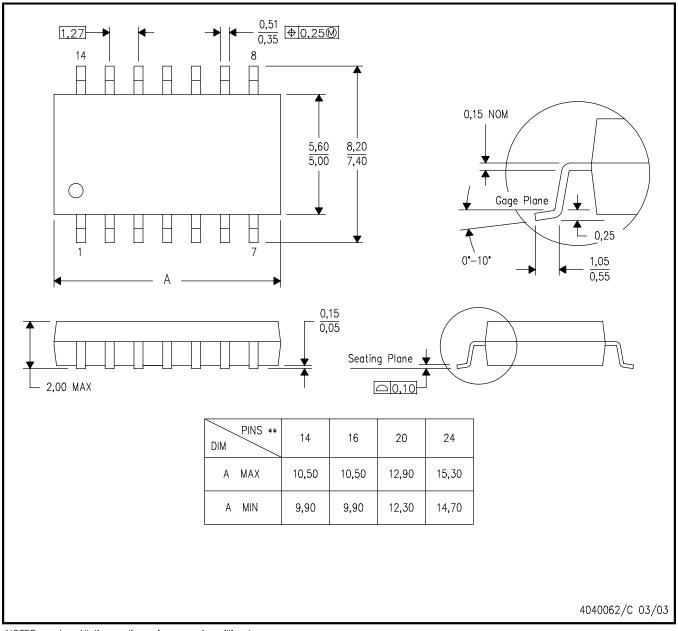

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.

D. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194

DW (R-PDSO-G20)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AC.

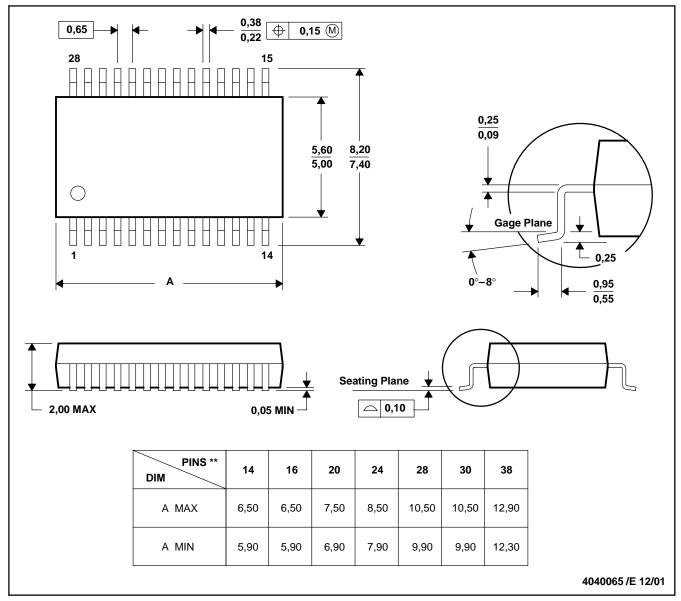


MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

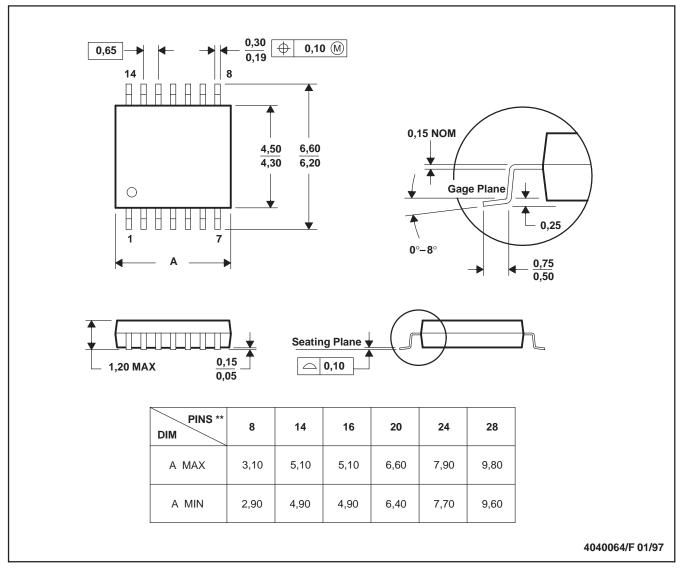
DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.


C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-150

PW (R-PDSO-G**)

14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

e
d
trol
work
d trol wo

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2004, Texas Instruments Incorporated