54LS279/DM54LS279/DM74LS279 Quad S-R Latches ## **General Description** The 'LS279 consists of four individual and independent Set-Reset Latches with active low inputs. Two of the four latches have an additonal \overline{S} input ANDed with the primary \overline{S} input. A low on any \overline{S} input while the \overline{R} input is high will be stored in the latch and appear on the corresponding Q output as a high. A low on the \overline{R} input while the \overline{S} input is high will clear the Q output to a low. Simultaneous transistion of the \overline{R} and \overline{S} inputs from low to high will cause the Q output to be indeterminate. Both inputs are voltage level triggered and are not affected by transition time of the input data. #### **Features** Alternate military/aerospace device (54LS279) is available. Contact a National Semiconductor Sales Office/ Distributor for specifications. ### **Connection Diagram** #### **Dual-In-Line Package** TL/F/6420-1 Order Number 54LS279DMQB, 54LS279FMQB, 54LS279LMQB, DM54LS279J, DM74LS279M or DM74LS279N See NS Package Number E20A, J16A, M16A, N16E or W16A #### **Function Table** | Inputs | | Output | |---------------|---|----------------| | <u>\$</u> (1) | R | Q | | L | L | н• | | L | н | н | | Н | L | L | | Н | Н | Q ₀ | H = High Level L = Low Level Q₀ = The Level of Q before the indicated input conditions were established. *This output level is pseudo stable; that is, it may not persist when the \overline{S} and \overline{R} inputs return to their inactive (high) level. Note 1: For latches with double 5 inputs: H = both \$ inputs high L = one or both S inputs low ## **Absolute Maximum Ratings (Note)** If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage 7V Input Voltage 7V Operating Free Air Temperature Range Storage Temperature Range -65°C to +150°C Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation. ## **Recommended Operating Conditions** | Symbol | Parameter | DM54LS279 | | | DM74LS279 | | | Units | |-----------------|--------------------------------|-----------|-----|------|-----------|-----|------|---------| | - | | Min | Nom | Max | Min | Nom | Max | - Units | | V _{CC} | Supply Voltage | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | ٧ | | V _{IH} | High Level Input Voltage | 2 | | | 2 | | | ٧ | | V _{IL} | Low Level Input Voltage | | | 0.7 | | | 0.8 | ٧ | | loн | High Level Output Current | | | -0.4 | | | -0.4 | mA | | loL | Low Level Output Current | | | 4 | | | 8 | mA | | TA | Free Air Operating Temperature | -55 | | 125 | 0 | | 70 | °C | # Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted) | Symbol | Parameter | Conditions | | Parameter Conditions | Min | Typ
(Note 1) | Max | Units | |---|---|--|------|----------------------|-------|-----------------|------|-------| | V _I input Clamp Voltage | | $V_{CC} = Min, I_I = -18 \text{ mA}$ | | | | -1.5 | ٧ | | | V _{OH} High Level Output | V _{CC} = Min, I _{OH} = Max | DM54 | 2.5 | 3.5 | | V | | | | | Voltage | $V_{IL} = Max, V_{IH} = Min$ | DM74 | 2.7 | 3.5 | | ' | | | V _{OL} Low Level Output
Voltage | V _{CC} = Min, I _{OL} = Max | DM54 | | 0.25 | 0.4 | v | | | | | V _{IL} = Max, V _{IH} = Min | DM74 | | 0.35 | 0.5 | | | | | | $I_{OL} = 4 \text{ mA, } V_{CC} = \text{Min}$ | DM74 | | 0.25 | 0.4 | | | | | lı . | Input Current @ Max
Input Voltage | V _{CC} = Max, V _I = 7V | | | | 0.1 | mA | | | lін | High Level Input
Current | V _{CC} = Max, V _I = 2.7V | 7 | | | 20 | μΑ | | | կլ | Low Level Input
Current | V _{CC} = Max, V _I = 0.4V | | | | -0.4 | mA | | | Short Circuit Output Current | V _{CC} = Max | DM54 | -20 | | - 100 | mA | | | | | Output Current | (Note 2) | DM74 | -20 | | -100 |] "" | | | loc | Supply Current | V _{CC} = Max (Note 3) | | | 3.8 | 7 | mA | | Note 1: All typicals are at V_{CC} = 5V, T_A = 25°C. Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second. Note 3: I_{CC} is measured with all \overline{R} inputs grounded, all \overline{S} inputs at 4.5V and all outputs open. | Symbol | Parameter | From (Input) To (Output) | | 1 | | | | |------------------|--|--------------------------|------------------------|-----|------------------------|-----|-------| | | | | C _L = 15 pF | | C _L = 50 pF | | Units | | | | | Min | Max | Min | Max | 1 | | t _{PLH} | Propagation Delay Time
Low to High Level Output | ₹ to
Q | | 22 | | 25 | ns | | ^t PHL | Propagation Delay Time
High to Low Level Output | ₹ to
Q | - | 15 | | 23 | ns | | t _{PHL} | Propagation Delay Time
High to Low Level Output | R to
Q | | 27 | | 33 | ns |