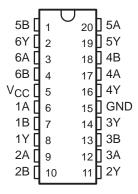
SDAS045B - AUGUST 1984 - REVISED MAY 1986

- High Capacitive Drive Capability
- 'ALS1832A Has Typical Delay Time of 5 ns (C_L = 50 pF) and Typical Power Dissipation of 5.3 mW per Gate
- 'AS1832 Has Typical Delay Time of 3.9 ns (C_L = 50 pF) and Typical Power Dissipation of Less than 17 mW per Gate
- Center V_{CC} and GND Configuration Provides Minimum Lead inductance in High Current Switching Applications
- Package Options include Plastic Small Outline Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil DIPs
- Dependable Texas Instruments Quality and Reliability

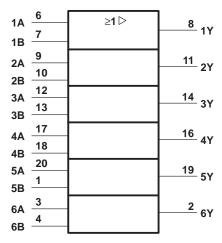
description

These devices contain six independent 2-input OR drivers. They perform the Boolean functions Y = A + B or $Y = \overline{A} \bullet \overline{B}$ in positive logic.

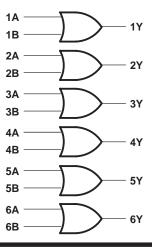

The center pin configuration used in the 'ALS1832A and 'AS1832 provides a reduction of lead inductance when compared to the 'ALS832A and 'AS832B. This reduction of lead inductance will minimize noise generated onto either the V_{CC} or GND bus. This reduction is significant in high current switching applications.

The SN54ALS1832A and SN54AS1832 are characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ALS1832A and SN74AS1832 are characterized for operation from 0°C to 70°C.

FUNCTION TABLE (each driver)


	•	
INP	UTS	OUTPUT
Α	В	Υ
Н	Х	Н
Х	Н	Н
L	L	L

SN54ALS1832A, SN54AS1832...J PACKAGE SN74ALS1832A, SN74AS1832...N PACKAGE (TOP VIEW)


Use 'ALS832A or 'AS832B for chip carrier option.

logic symbol†

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

Copyright © 1986, Texas Instruments Incorporated

SDAS045B - AUGUST 1984 - REVISED MAY 1986

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC}		 7 V
Input voltage		 7 V
Operating free-air temperature range:		
	SN74ALS1832A	 0°C to 70°C
Storage temperature range		 -65°C to 150°C

recommended operating conditions

		SN54ALS1832A		SN7	UNIT			
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VCC	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.7			0.8	V
IOH	High-level output current			-12			-15	mA
lOL	Low-level output current			12			24	mA
TA	Operating free-air temperature	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		SN54	1ALS183	2A	SN74	UNIT		
PARAMETER			MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	UNIT
VIK	$V_{CC} = 4.5 \text{ V},$	$I_{I} = -18 \text{ mA}$			-1.2			-1.2	V
	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V},$	$I_{OH} = -0.4 \text{ mA}$	V _{CC} -2			V _{CC} -2			
\/a	$V_{CC} = 4.5 \text{ V},$	$I_{OH} = -3 \text{ mA}$	2.4	3.2		2.4	3.2		V
VOH	$V_{CC} = 4.5 \text{ V},$	$I_{OH} = -12 \text{ mA}$	2						V
	V _{CC} = 4.5 V,	$I_{OH} = -15 \text{ mA}$				2			
V	V _{CC} = 4.5 V,	I _{OL} = 12 mA		0.25	0.4		0.25	0.4	V
VOL	$V_{CC} = 4.5 \text{ V},$	$I_{OL} = 24 \text{ mA}$					0.35	0.5	V
lį	$V_{CC} = 5.5 \text{ V},$	V _I = 7 V			0.1			0.1	mA
lН	V _{CC} = 5.5 V,	V _I = 2.7 V			20			20	μΑ
կլ	$V_{CC} = 5.5 \text{ V},$	V _I = 0.4 V			-0.1			-0.1	mA
10 [‡]	V _{CC} = 5.5 V,	V _O = 2.25 V	-30		-112	-30		-112	mA
ІССН	V _{CC} = 5.5 V,	V _I = 4.5 V		6	9		6	9	mA
^I CCL	$V_{CC} = 5.5 \text{ V},$	V _I = 0		9.5	16		9.5	16	mA

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 50 pF, R _L = 500 Ω, T _A = 25°C 'ALS1832A	SN54ALS MIN	C _L = 50 R _L = 50 T _A = M	-		UNIT
^t PLH	A or B	V	6	2	11	2	9	ns
t _{PHL}	AOIB	'	4	1	10	1	8	113

NOTE 1: Load circuit and voltage waveforms are shown in Section 1.

[‡] The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, I_{OS}.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC}		7 V
Input voltage		7 V
	SN54AS1832	
	SN74AS1832	0°C to 70°C
Storage temperature range		-65°C to 150°C

recommended operating conditions

		SN54AS1832		32	SN	UNIT		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VCC	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage	2			2			V
V _{IL}	Low-level input voltage			0.8			0.8	V
IOH	High-level output current			-40			-48	mA
loL	Low-level output current			40			48	mA
TA	Operating free-air temperature	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETED	TEST CONDITIONS		SN	SN54AS1832			SN74AS1832			
PARAMETER			MIN	TYP†	MAX	MIN	TYP†	MAX	UNIT	
VIK	V _{CC} = 4.5 V,	I _I = -18 mA			-1.2			-1.2	V	
	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V},$	$I_{OH} = -2 \text{ mA}$	V _{CC} -2			V _{CC} -2				
\/o	$V_{CC} = 4.5 \text{ V},$	$I_{OH} = -3 \text{ mA}$	2.4	3.2		2.4	3.2		V	
VOH	$V_{CC} = 4.5 \text{ V},$	$I_{OH} = -40 \text{ mA}$	2						V	
	$V_{CC} = 4.5 \text{ V},$	$I_{OH} = -48 \text{ mA}$				2				
Vo	$V_{CC} = 4.5 \text{ V},$	$I_{OL} = 40 \text{ mA}$		0.25	0.5				V	
VOL	$V_{CC} = 4.5 \text{ V},$	$I_{OL} = 48 \text{ mA}$					0.35	0.5	V	
lį	V _{CC} = 5.5 V,	V _I = 7 V			0.1			0.1	mA	
lіН	V _{CC} = 5.5 V,	V _I = 2.7 V			20			20	μΑ	
I _{IL}	$V_{CC} = 5.5 \text{ V},$	$V_{I} = 0.4 V$			-0.5			-0.5	mA	
1 ₀ ‡	V _{CC} = 5.5 V,	V _O = 2.25 V	-50		-200	-50		-200	mA	
ICCH	V _{CC} = 5.5 V,	V _I = 4.5 V		11	17		11	17	mA	
^I CCL	$V_{CC} = 5.5 \text{ V},$	V _I = 0		22	36		22	36	mA	

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V},$ $C_L = 50 \text{ pF},$ $R_L = 500 \Omega,$ $T_A = \text{MIN to MAX}$ $SN54AS1832 \mid SN74AS1832$			UNIT
			MIN	MAX	MIN	MAX	
t _{PLH}	A or B	V	1	7	1	6.3	ns
^t PHL	A 01 B	r	1	7	1	6.3	113

NOTE 1: Load circuit and voltage waveforms are shown in Section 1.

[‡] The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, I_{OS}.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated