10BASE-T1S MAC-PHY Ethernet Controller with SPI

LAN8650/1

Description

The LAN8650/1 combines a Media Access Controller (MAC) and an Ethernet PHY to enable low-cost microcontrollers, including those without an onboard MAC, to access 10BASE-T1S networks. The common standard Serial Peripheral Interface (SPI) of the LAN8650/1 allows interfacing with nearly any microcontroller, so that the transfer of Ethernet packets and LAN8650/1 control/status commands are performed over a single, serial interface. SPI also requires only 4 pins, enabling a simpler hardware interface with fewer pins than MII or RMII.

Ethernet packets are segmented and transferred over the serial interface according to the OPEN Alliance 10BASE-T1x MAC-PHY Serial Interface specification. The serial interface protocol can simultaneously transfer both transmit and receive packets between the station controller and the LAN8650/1, using either store and forward or cut-through packet handling.

Highlights

- High-performance 10BASE-T1S single-pair Ethernet PHY designed to IEEE Std. 802.3cg -2019
 - 10 Mbit/s over a single balanced pair
 - Half-duplex multidrop mixing segments up to at least 25m with up to at least 8 PHYs
 - Half-duplex point-to-point link segments up to at least 15m
- Physical Layer Collision Avoidance (PLCA)
 - Burst mode for transmission of multiple packets for latency-sensitive applications
 - Minimize latency for time-sensitive applications by assigning multiple PLCA IDs per node
- Carrier Sense Multiple Access / Collision Detection (CSMA/CD) media access control
- Application Controlled Media Access (ACMA) for implementation of collision-free Time-Division Multiple Access (TDMA) methods
- Integrated Media Access Controller (MAC)
- Industry standard Serial Peripheral Interface (SPI), designed to the OPEN Alliance 10BASE-T1x MAC-PHY Serial Interface specification, V1.1

- Support for Time Sensitive Networks (IEEE Std 802.1AS[™] / IEEE 1588[™])
 - Internal wall clock
 - Event generation and event capture synchronized to the wall clock
 - Phase adjuster for the wall clock to minimize microcontroller overhead
 - Packet timestamping
- Credit-based traffic shaping
- EtherGREEN[™] Energy Efficiency
 - Ultra-low power sleep mode
 - Wake up triggered by either MDI activity or local WAKE IN
 - WAKE_OUT pulse assertion; INH output for enable/disable of ECU supply
- Over-temperature and under-voltage protection
- Cable fault diagnostics and Signal Quality Indication (SQI) support
- Enhanced electromagnetic compatibility / electromagnetic interference (EMC/EMI) performance
- Single 3.3V supply with integrated 1.8V regulator (LAN8651)
- Small footprint 32-pin (5 x 5 mm) VQFN package with wettable flanks
- -40°C to +125°C extended temperature range
- AEC-Q100 qualification
- Functional Safety Support: Functional Safety Manual, FMEDA, Dependent Failure Analysis (DFA)

Target Applications

- In-vehicle networking and automotive zonal architecture
- Sensor/actuator networks and machine control
- Industrial control cabinets and building automation
- LED lighting

This page intentionally left blank.

Conformity

Table 1 shows the conformity relationship between data sheet, silicon, and product revisions. This data sheet applies to silicon revision 2 (0010b) as shown below.

Table 1. Conformity Table

Product Revision <u>1</u>	Silicon Revision ²	Data Sheet Revision
В0	Rev 1 (0001b)	DS60001734C
B1	Rev 2 (0010b)	DS60001734D

Notes:

- 1. The product revision is noted in the package top marking.
- 2. The silicon revision is obtained by reading the Revision field from the Device Identification (DEVID) register.

Related Links

10.2. Package Marking Information11.6.6. DEVID

Table of Contents

De	scripti	on	1
Co	nform	ity	3
1.	Prefa	ace	6
	1.1.	General Terms	6
	1.2.	Buffer Types	
	1.3.	Register Bit Types	
	1.4.	Reference Documents	
2.	Intro	duction	9
	2.1.	General Description	9
	2.2.	The LAN8650/1 Family	10
	2.3.	Example Systems	11
3.	Pin D	Descriptions and Assignments	13
	3.1.	LAN8650 Pin Assignments	13
	3.2.	LAN8651 Pin Assignments	15
	3.3.	Pin Descriptions	17
	3.4.	Configurable DIO Pins	19
4.	Glob	al Functional Descriptions	20
	4.1.	Reset and Startup	20
	4.2.	Clock Manager	23
	4.3.	Interrupt Sources	23
	4.4.	Sleep Mode	
	4.5.	Synchronization Support	
	4.6.	Safety Features	39
5.	Seria	al Peripheral Interface (SPI)	50
	5.1.	SPI Format	50
	5.2.	MAC Frame Data Transactions	
	5.3.	Control Transactions	58
6.	Ethe	rnet MAC	61
	6.1.	Description	
	6.2.	Embedded Characteristics	61
	6.3.	Block Diagram	
	6.4.	Functional Description	
	6.5.	Programming Interface	66
7.	Integ	grated PHY	69
	7.1.	Interrupt Management	69
	7.2.	Physical Layer Collision Avoidance (PLCA)	69
	7.3.	Application Controlled Media Access (ACMA)	73
	7.4.	Credit Based Traffic Shaping	74
	7.5.	Signal Quality Indicator (SQI)	
	7.6.	Cable Fault Diagnostics	78

8.	Appli	cation Information	79
	8.1.	SPI Connectivity	79
	8.2.	System Configuration without Sleep Mode	79
	8.3.	Power Connectivity	80
	8.4.	Electromagnetic Compatibility (EMC) Considerations	84
	8.5.	PLCA Collision Detection	85
	8.6.	Crystal Oscillator Selection	86
	8.7.	Reference Schematics	86
9.	Opera	rational Characteristics	91
	9.1.	Absolute Maximum Ratings	91
	9.2.	Operating Conditions	92
	9.3.	Power Consumption	93
	9.4.	Package Thermal Specifications	94
	9.5.	DC Specifications (other than 10BASE-T1S PMA)	94
	9.6.	AC Specifications	
	9.7.	Crystal Specifications	
10.	Packa	aging Information	104
	10.1.	32-VQFN	104
		Package Marking Information	
11.	Regis	ster Descriptions	108
	11.1.	Open Alliance 10BASE-T1x MAC-PHY Standard Registers	109
		MAC Registers	
		PHY PCS Registers	
	11.4.	PHY PMA/PMD Registers	196
		PHY Vendor Specific Registers	
		Miscellaneous Register Descriptions	
12.	Data	Sheet Revision History	347
Mic	rochip	o Information	348
	The N	Microchip Website	348
		uct Change Notification Service	
		omer Support	
		uct Identification System	
		ochip Devices Code Protection Feature	
		l Notice	
	_	emarks	
		ity Management System	
		dwide Sales and Service	

1. Preface

1.1 General Terms

Table 1-1. General Terms

Term	Description
10BASE-T	10 Mbit/s Ethernet over twisted pair, IEEE Std 802.3™ Clause 14
10BASE-T1L	10 Mbit/s Ethernet over long-reach single pair of conductors, IEEE Std 802.3 Clause 146
10BASE-T1S	10 Mbit/s Ethernet over short-reach single pair of conductors, IEEE Std 802.3 Clause 147
ACMA	Application Controlled Media Access
CSMA/CD	Carrier Sense Multiple Access with Collision Detection
CSR	Control and Status Register
BT	Bit Time, 100 ns for 10 Mbps Ethernet
LDO	Low Dropout Regulator
MAC	Media Access Controller
MDI	Medium Dependent Interface
MII	Media Independent Interface, IEEE Std 802.3 Clause 22
PCS	Physical Coding Sublayer
PLCA	Physical Layer Collision Avoidance, IEEE Std 802.3 Clause 148
PMA	Physical Medium Attachment sublayer
PMD	Physical Medium Dependent sublayer
POR	Power-on Reset
RS	Reconciliation Sublayer
SFD	Start-of-Frame Delimiter. This is the 8-bit value indicating the end of the preamble and the beginning of an Ethernet frame.
SPI	Serial Peripheral Interface
SQI	Signal Quality Indicator
STA	Station management entity
TSSI	Time Synchronization Service Interface, IEEE Std 802.3 Clause 90

1.2 Buffer Types

Table 1-2. LAN8650/1 Buffer Type Descriptions

Description
Analog input
Analog bi-directional
Crystal oscillator input
Crystal oscillator output
$55k\Omega$ (typical) internal pull-up. Internal pull-up resistors prevent unconnected inputs from floating. Do not rely on internal resistors to drive signals external to the device. When connected to a load that must be pulled high, an external resistor must be added.
3.3V input (VDDAU continuous power domain)
3.3V Schmitt-triggered input (VDDP power domain)
3.3V output with configurable output drive (VDDP power domain)
3.3V high-speed output with configurable output drive (VDDP power domain)
3.3V N-channel open-drain sink output drive (VDDP power domain)
3.3V P-channel open-drain source output drive (VDDAU power domain)

Note: Digital signals are not 5V tolerant.

1.3 Register Bit Types

The following table describes the register bit attributes used throughout this document.

Table 1-3. Register Bit Types

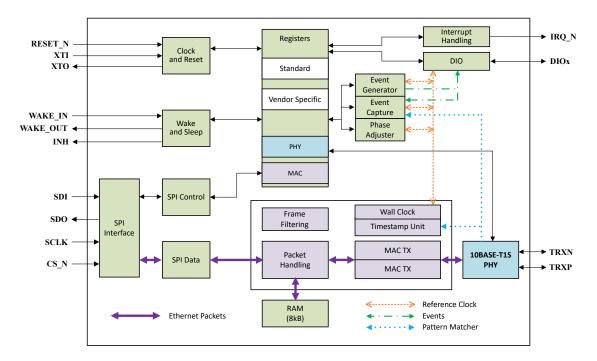
Register Bit Type Notation	Register Bit Description
R	Read: A register or bit with this attribute can be read.
W	Write: A register or bit with this attribute can be written.
RO	Read Only: A register or bit with this attribute is read only; writing has no effect.
WO	Write Only: If a register or bit is write-only, reads will return unspecified data.
W1S	Write One to Set: Writing a one sets the value. Writing a zero has no effect.
W1C	Write One to Clear: Writing a one clears the value. Writing a zero has no effect.
RC	Read to Clear: Content is cleared after the read. Writes have no effect.
SC	Self Clearing: A bit with this attribute will be cleared to '0' after being written as '1'. Hardware often clears such bits following the completion of some action initiated by the write.
NASR	Not Affected by Software Reset: The state of NASR bits do not change on assertion of a software reset.

Many of these register bit notations can be combined. Some examples of this are:

- R/W: Can be written. Will return current setting on a read.
- R/W SC: Bit is readable. When set, it will automatically be cleared by hardware once some action is complete.
- R/W1C: Bit is readable. Write a '1' to this bit to clear.

1.4 Reference Documents

- 1. IEEE Std 802.3cg[™]-2019, IEEE Standard for Ethernet, Amendment 5: Physical Layer Specifications and Management Parameters for 10 Mb/s Operation and Associated Power Delivery over a Single Balanced Pair of Conductors.
 - standards.ieee.org/standard/802_3cg-2019.html
- 2. IEEE Std 802.3™-2018, IEEE Standard for Ethernet. standards.ieee.org/standard/802_3-2018.html
- 3. IEEE Std 1588™-2008, IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems. standards.ieee.org/standard/1588-2008.html
- 4. IEEE Std 802.1AS[™]-2011, IEEE Standard for Timing and Synchronization for Time-Sensitive Applications in Bridged Local Area Networks. standards.ieee.org/standard/802_1AS-2011.html
- Microchip, LAN86xx Bus Interface Network (BIN) Reference Design Application Note, DS60001718, Microchip www.microchip.com/DS60001718
- 6. Microchip, LAN8650/1 Configuration Application Note, DS60001760. www.microchip.com/DS60001760
- 7. OPEN Alliance, 10BASE-T1x MAC-PHY Serial Interface, Version 1.1. opensig.org/about/specifications/
- 8. OPEN Alliance, 10BASE-T1S Implementation Specification. opensig.org/about/specifications/
- 9. OPEN Alliance, Advanced Diagnostic Features for 10BASE-T1S Automotive Ethernet PHYs. opensig.org/about/specifications/
- 10. OPEN Alliance, 10BASE-T1S Sleep/Wake-up Specification. opensig.org/about/specifications/



2. Introduction

2.1 General Description

The Microchip LAN8650/1 is a 32-pin, stand-alone Ethernet Controller which includes a 10BASE-T1S Ethernet physical layer transceiver (PHY), a Medium Access Controller (MAC) and an industry standard Serial Peripheral Interface (SPI) to enable low-cost microcontrollers to support standard networking software stacks over one inexpensive balanced pair of conductors. A block diagram is shown below.

Figure 2-1. Block Diagram

The 10BASE-T1S PHY is designed according to the IEEE Std 802.3cgTM-2019 specification and provides 10 Mbit/s half-duplex transmit and receive capability over a single balanced pair of conductors such as Unshielded Twisted Pair (UTP) cable. It allows for the creation of both half-duplex multidrop and point-to-point network topologies. Point-to-point link segments of up to at least 15m in length are supported. The multidrop mode can support up to at least 8 nodes on one mixing segment, which can be up to at least 25m long. The ability to connect multiple PHYs to a common mixing segment reduces weight and implementation costs by reducing cabling, connectors and switch ports.

The LAN8650/1 includes an Ethernet MAC to enable low-cost microcontrollers to communicate over 10BASE-T1S via an ordinary SPI interface; there is no need for an on-chip MAC or a high pin count MII. The MAC is 802.3 compliant and includes frame filtering to limit incoming packets.

A host microcontroller communicates with the MAC using a SPI port, according to the OPEN Alliance 10BASE-T1x MAC-PHY Serial Interface specification, which describes not only transfer of Ethernet data, but also configuration and management of control and status registers. The LAN8650/1 can accommodate a SPI clock of up to 25 MHz. The host controller can receive an interrupt from the LAN8650/1 or trigger a reset via the reset pin.

Access to the physical medium is managed by CSMA/CD and optionally supplemented by Physical Layer Collision Avoidance (PLCA) in which the LAN8650/1 may be configured with up to 9 transmit

opportunities in each bus cycle. Additionally, Application Controlled Media Access (ACMA) allows implementation of time-division multiple access (TDMA) to the physical media.

Microchip's LAN8650/1 EtherGREEN energy efficient technology provides low power 10BASE-T1S PHY operation along with an ultra-low power sleep mode with flexible wake options.

Advanced PHY diagnostics are provided, which enable troubleshooting and monitoring capabilities such as cable defect detection of shorts or opens, a receiver Signal Quality Indicator (SQI), PLCA diagnostics, over-temperature, under-voltage detection, comprehensive status interrupt support, and various loopback and test modes.

In addition, the LAN8650/1 can be used to implement high-precision clock synchronization. This enables implementation of the IEEE Std 802.1AS profile, among others, of IEEE Std 1588 for applications utilizing AVB or other Time Sensitive Networking (TSN) standards.

An internal timestamp wallclock enables time stamping frame ingress and egress as described in the OPEN Alliance 10BASE-T1x MAC-PHY Serial Interface specification. This clock can be used for time stamping external events or for generating synchronized pulses using the internal event generator. The device also contains a phase adjuster, which enables smoother clock adjustments with fewer controller write accesses. The reference clock can either be derived from the local crystal or provided by an external source.

The LAN8650/1 is designed to be used in ISO 26262 Functional Safety applications. A Functional Safety Package is available, including Safety Manual; Failure Modes, Effects, and Diagnostic Analysis (FMEDA); and Dependent Failure Analysis (DFA). Please contact Microchip support for additional information.

The LAN8651 includes an integrated low-dropout (LDO) regulator to simplify designs where only 3.3V supplies are available.

2.2 The LAN8650/1 Family

The Microchip LAN8650/1 family includes the following devices:

- LAN8650
- LAN8651

Device specific features that do not pertain to the entire LAN8650/1 family are called out independently throughout this document. Table 2-1 below provides a summary of the feature differences between family members.

Table 2-1. LAN8650/1 Family Feature Matrix

Part Number	Package	SPI Support	Integrated 1.8V LDO	PLCA Support	ACMA Support	IEEE 802.1AS / TSSI Support	INH Pin Support	WAKE_IN Pin Support	WAKE_OUT Pin Support	AEC-Q100 -40° to +125°C
LAN8650	32-VQFN	~		~	~	~	~	~	~	•
LAN8651	32-VQFN	~	•	✓	~	~	~	~	~	~

2.3 Example Systems

A simple system-level block diagram for the LAN8650/1 is shown in Figure 2-2, below. This system does not use sleep mode, so VDDA and VDDAU can be treated as the same supply and VDDP must only be properly isolated from the analog supplies. When using the LAN8651 which has an internal voltage regulator, no external 1.8V supply is needed.

Figure 2-2. Simple System Using LAN8650/1

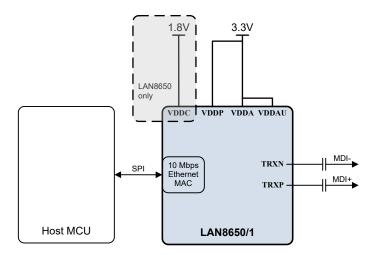
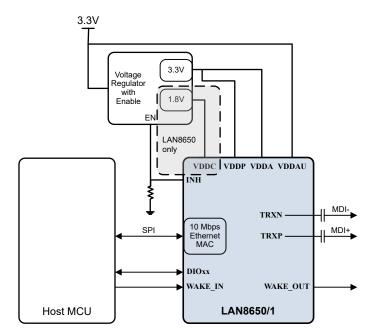
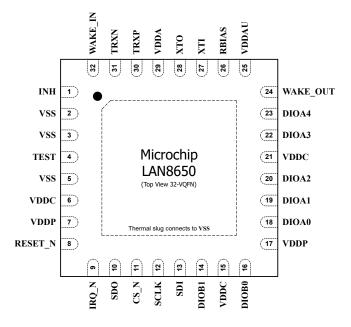



Figure 2-3 shows a system which is designed to use the low power sleep mode so the constant voltage supply VDDAU is separate from the other voltage supplies. VDDA and VDDP will be disabled in sleep mode as is the 1.8V supply, required when using the LAN8650. In this particular system, the host will initiate sleep mode and then ensure that all inputs to the LAN8650/1 are high-impedance. In a system where external power supplies are required to remain active while other devices shut down, the LAN8650/1 can drive the INH pin for a programmable delay period before entering sleep mode. In this example, the host will bring the LAN8650/1 out of sleep using WAKE_IN and other devices can then be awakened via WAKE_OUT. The advanced features available on the DIO pins are also available to the host microcontroller in this system.

Figure 2-3. System with Sleep Mode and Advanced Features Using LAN8650/1

3. Pin Descriptions and Assignments


The pin assignments for the LAN8650/1 are detailed in the following sections. Pin descriptions are detailed in the Pin Descriptions section. Pin buffer type definitions are provided in the Buffer Types section.

Related Links

- 1.2. Buffer Types
- 3.3. Pin Descriptions

3.1 LAN8650 Pin Assignments

Figure 3-1. LAN8650 32-VQFN Pin Assignments

Note: Exposed pad (VSS) on bottom of package must be connected to ground.

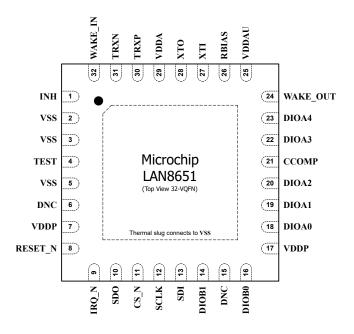


Table 3-1. LAN8650 32-VQFN Pin Assignments

Pin Num	Pin Name	Pin Num	Pin Name				
1	INH	17	VDDP				
2	VSS	18	DIOA0				
3	VSS	19	DIOA1				
4	TEST	20	DIOA2				
5	VSS	21	VDDC				
6	VDDC	22	DIOA3				
7	VDDP	23	DIOA4				
8	RESET_N	24	WAKE_OUT				
9	IRQ_N	25	VDDAU				
10	SDO	26	RBIAS				
11	CS_N	27	XTI				
12	SCLK	28	XTO				
13	SDI	29	VDDA				
14	DIOB1	30	TRXP				
15	VDDC	31	TRXN				
16	DIOB0	32	WAKE_IN				
	Exposed Pad (VSS) must be connected to ground.						

3.2 LAN8651 Pin Assignments

Figure 3-2. LAN8651 32-VQFN Pin Assignments

 $\textbf{Note:} \ \texttt{Exposed pad (VSS)} \ \ \texttt{on bottom of package must be connected to ground.}$

Table 3-2. LAN8651 32-VQFN Pin Assignments

Pin Num	Pin Name	Pin Num	Pin Name			
1	INH	17	VDDP			
2	VSS	18	DIOA0			
3	VSS	19	DIOA1			
4	TEST	20	DIOA2			
5	VSS	21	CCOMP			
6	DNC	22	DIOA3			
7	VDDP	23	DIOA4			
8	RESET_N	24	WAKE_OUT			
9	IRQ_N	25	VDDAU			
10	SDO	26	RBIAS			
11	CS_N	27	XTI			
12	SCLK	28	XTO			
13	SDI	29	VDDA			
14	DIOB1	30	TRXP			
15	DNC	31	TRXN			
16	DIOB0	32	WAKE_IN			
	Exposed Pad (VSS) must be connected to ground.					

3.3 Pin Descriptions

This section contains descriptions of the various LAN8650/1 pins. The "_N" symbol in the signal name indicates that the active, or asserted, state occurs when the signal is at a low voltage level. For example, RESET_N indicates that the reset signal is active low. When "_N" is not present after the signal name, the signal is asserted when at the high voltage level.

The terms assertion and negation are used exclusively. This is done to avoid confusion when working with a mixture of "active low" and "active high" signals. The term assert, or assertion, indicates that a signal is active, independent of whether that level is represented by a high or low voltage. The term negate, or negation, indicates that a signal is inactive.

Table 3-3. Serial Peripheral Interface (SPI) Pins

Name	Symbol	Buffer Type	Description
Serial Clock	SCLK	VIS-VDDP	Serial clock input
Serial Data In	SDI	VIS-VDDP	Serial data input
Serial Data Out	SDO	VOH-VDDP	Serial data output
Serial Chip Select	CS_N	VIS-VDDP (PU)	Serial peripheral chip select
Interrupt	IRQ_N	VO-VDDP (PU)	Device interrupt (Active low) Note: In some cases, the host controllers may require a 10 k Ω (typical) pull-up to its I/O power supply.

Table 3-4. Ethernet Transceiver Pins

Name	Symbol	Buffer Type	Description
Ethernet TX/RX Positive Terminal	TRXP	AIO	Positive terminal for transmit/receive signal
Ethernet TX/RX Negative Terminal	TRXN	AIO	Negative terminal for transmit/receive signal

Table 3-5. Power Management Pins

Name	Symbol	Buffer Type	Description
Inhibit	INH	VODH-VDDAU	Inhibit. Used to switch on/off the main external voltage regulators.
			This pin operates in the VDDAU domain.
			RESET_N assertion does not affect the state of this pin.
			This signal is an active high, P-channel open-drain source output. The pin will be driven to VDDAU to inhibit the shutdown of external voltage regulators. When the external regulators may be shutdown, this pin will become high impedance.
			Note: When used, this pin requires a pull-down resistor.
			When not used, this pin should be left unconnected.
Wake Input	WAKE_IN	VI-VDDAU	Wakeup Input. Asserted to move the part out of sleep. This pin implements the optional wake input described in the TC10 specification.
			Note: When used, this pin requires a pull-up or pull-down resistor, depending on the software configured assertion polarity.
			Note: This pin operates in the VDDAU domain.
			When not used, this pin should be connected to VSS.

continued			
Name	Symbol	Buffer Type	Description
Wake Output	_		Wake Output. Asserted when the part wakes out of sleep. This pin implements the optional wake output described in the TC10 specification.
			Note: When used, this pin requires a pull-down resistor.
			Note: This pin operates in the VDDP domain.
			When not used, this pin should be left unconnected.

Table 3-6. Configurable Pins

Name	Symbol	Buffer Type	Description
**Reserved bits of instruction from		egister must not be	e written with any values other than their default without
Configurable Pins	DIOA0 DIOA1 DIOA2 DIOA3 DIOA4 DIOB0	VIS-VDDP, VO- VDDP	These pins may be configured as input or output for various purposes. When not used, these pins may be connected directly to ground.
Reserved	DIOB1		This pin is reserved for Microchip test use. It is recommended that this pin is connected directly to ground.

Table 3-7. Miscellaneous Pins

Name	Symbol	Buffer Type	Description
External 25 MHz Crystal Input	XTI	ICLK	External 25 MHz crystal input
External 25 MHz Crystal Output	XTO	OCLK	External 25 MHz crystal output
System Reset	RESET_N	VIS-VDDP	System reset. This pin is active low. When not used, this pin may be connected directly to VDDP.
Bias Resistor	RBIAS	AI	External bias resistor connection pin. This pin requires connection of a 12.4 k Ω resistor to ground. Note: The resistor must be within ± 1% tolerance across the entire expected operating temperature range.
Reserved for Test	TEST	VIS-VDDP	This pin should be connected to VDDP.
Do Not Connect	DNC	-	The pin must be left floating externally unless otherwise directed by Microchip.

Table 3-8. Power Pins

Name	Symbol	Description
Core LDO Supply Compensation	ССОМР	Internal +1.8V LDO core compensation Note: This pin requires a 4.7 µF low ESR capacitor to the PCB ground plane. Note: This pin is only on the LAN8651.
+1.8V Switchable Core Power Supply Input	VDDC	+1.8V core power supply input. When in sleep mode, this supply must be disabled. Note: These pins are only on the LAN8650.

continued			
Name	Symbol	Description	
+3.3V Switchable I/O Power Supply Input	VDDP	+3.3V I/O power supply input. When in sleep mode, this supply must be disabled.	
+3.3V Continuous VDDAU Power Supply Input	VDDAU	+3.3V continuous VDDAU power supply input. Note: This supply must be provided during sleep mode.	
		Note: When wake/sleep support is not used, this pin is connected to the same supply as VDDA.	
+3.3V Switchable Analog Power Supply Input	VDDA	+3.3V analog power supply input. When in sleep mode, this supply must be disabled.	
Ground	VSS	Common ground Note: The exposed pad must be connected to the ground plane with a via array.	

3.4 Configurable DIO Pins

The digital IO pins (DIO) are pins which can be configured to enable additional features. The available options are summarized in the table below and can be selected in the Pad Control register. The default configuration of each pin is indicated with **bold** text. All of the default configurations permit unused pins to be wired directly to ground.

Note:

In order to use any functions that can be selected over these pins, the function must be configured in other registers. See the appropriate section for the desired function for additional details.

Table 3-9. Configurable Pin Functions

Pin Name	Direction	Description	
DIOA0	Input	Event Capture	
	Output	Event Generator 0	
DIOA1	Input	Event Capture	
	Output	Event Generator 1	
DIOA2	Input	ACMA or Event Capture	
	Output	Event Generator 2	
DIOA3	Input	Event Capture	
	Output	Event Generator 3	
DIOA4	Input	Reserved for Microchip test use	
	Output	One Pulse-per-second Signal	
	Output	Event Generator 2	
	Output	Event Generator 3	
DIOB0	Input	Synchronization Reference Clock	
	Output	Reference Clock Out	

4. Global Functional Descriptions

The following sections provide detailed information on functions, such as reset, power management and clock management, that affect the device as a whole. Features that are specific to the SPI, MAC, or PHY blocks are described in later chapters.

4.1 Reset and Startup

After the LAN8650/1 leaves reset, it must be configured before it can be used to transmit and receive data over the 10BASE-T1S MDI. This section describes the various reset modes and the startup sequence.

4.1.1 Resets

The device provides the chip-level reset sources described in the following sections.

4.1.1.1 Power-On Reset (POR)

A Power-On Reset occurs when power is initially applied to the device, or if any power supply drops below a falling threshold. The device will remain in reset until all power supplies have passed the appropriate rising threshold, and the LAN8650/1 is fully operational. The IRQ_N pin will be asserted and the RESETC (Reset Completed) bit of the OA_STATUSO Register will be set to 1, as specified by the Open Alliance. This indicates to the station controller that the device has been reset and requires configuration. The rising and falling thresholds are listed below in Table 4-1.

For more information about waking from low-power sleep mode, see the Sleep Mode Section of this document.

Table 4-1. POR Supply Thresholds

Supply	Rising Threshold_	Falling Threshold_
VDDAU	2.5V	2.3V
VDDA	2.5V	2.3V
VDDP	1.9V	1.9V
VDDC ²	1.5V	1.4V

Notes:

- 1. Rising and falling threshold voltages are design parameters and are neither tested nor characterized.
- 2. The LAN8651 internal 1.8V supply may be monitored externally at the CCOMP pin.

Related Links

11.1.6. OA_STATUS0

4.4. Sleep Mode

4.1.1.2 External Pin Reset (RESET_N)

A hardware reset will occur when the RESET_N pin is asserted. Once the RESET_N input is deasserted, the LAN8650/1 will restart operation. The device will indicate to the station's controller that it has been reset and must be configured in the same way as if a Power-On Reset had occurred: the IRQ_N pin will be asserted and the RESETC (Reset Completed) bit of the OA_STATUS Register will be set to 1.

The RESET_N pin must be connected externally to VDDP if unused. If used, the RESET_N pin must be driven for a minimum period as defined in the RESET_N Timing section.

Related Links

11.1.6. OA_STATUSO 9.6.3. RESET_N Timing

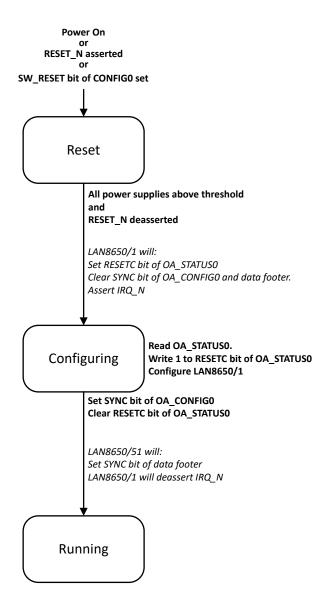
4.1.1.3 Software Reset

A software reset of the LAN8650/1 is available via the Soft Reset (SW_RESET) bit in the standard OA_CONFIGO register.

Note: The SW_RESET bit of the Clause 22 Basic Control register will reset only the internal PHY, not the entire device. This PHY only reset is not recommended for use. If such a reset is detected, by reading the RESETC bit of the STS2 register, reset the entire device.

Related Links

11.1.5. OA_CONFIG0 11.1.17. BASIC_CONTROL 11.5.3. STS2


4.1.2 Startup Sequence

After a reset, the LAN8650/1 indicates to the host that a reset has occurred by asserting the IRQ_N pin, and setting the RESETC bit of the OA_STATUSO register. The device is now ready to be configured by the host controller before it can be used to transmit and receive data. When the host accesses the LAN8650/1 via SPI, it will also see that the SYNC bit of the OA_CONFIGO register and of the data footer are cleared.

Once the host reads the OA_STATUSO, and determines that the cause of the interrupt was a reset, it should configure the LAN8650/1. As part of this configuration, there are two bits that must be written: the SYNC bit of the OA_CONFIGO register must be set to indicate that the device is configured and ready to transmit and the RESETC bit of the OA_STATUSO must be cleared so that IRQ_N line will stop asserting.

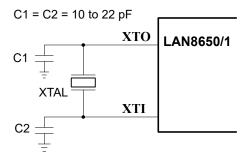
Figure 4-1. LAN8650/1 Startup and Configuration Sequence

The latest recommended startup configuration can be found in the LAN8650/1 Configuration Application Note AN1760. Additional details for customizing use of the MAC can be found in the Initialization section.

Related Links

1.4. Reference Documents

6.5.1. Initialization


4.2 Clock Manager

The Clock Manager generates the internal clocks from an external reference source.

4.2.1 Crystal Pins (XTI/XTO)

The XTI and XTO crystal oscillator pins are used to connect a 25.0 MHz clock source. The crystal oscillator should be in a fundamental, parallel resonant mode. Figure 4-2 depicts the external circuitry connected to the LAN8650/1 oscillator circuit. Since the internal inverter/amplifier is operated in its linear region, external series resistors should not be used as they will lower the gain and could cause start-up problems. The device contains an internal ~1 M Ω resistance in parallel with the crystal amplifier to initiate oscillation, therefore an external resistance between XTO and XTI should not be used. Several factors must be considered when selecting a crystal including load capacitance, oscillator margin, cut, and operating temperature. The crystal frequency must be 25.0 MHz.

Figure 4-2. Crystal Oscillator Input

Related Links

9.7. Crystal Specifications

4.3 Interrupt Sources

The OPEN Alliance 10BASE-T1x MAC-PHY Serial Interface specification requires that the interrupt is asserted on the following conditions if the conditions were not already reported in the most recent data footer:

- Receive data available
- Transmit buffer space available
- Extended status bit set

The specification then requires that the SPI controller initiate a data block transaction in order to obtain the current receive data block footer and determine the reason for the interrupt. See the section MAC Frame Receive Data Block Footer for more details on the footer. If the extended status (EXST) bit of the footer is set, the controller should then read the OA_STATUS0 register and, if needed, the OA_STATUS1 register to determine which status bit or bits are set.

The Open Alliance specification defines the operation of these registers. The OA_STATUSO contains interrupt bits that are defined by the standard, and the SPI host can select which of these bits will cause the extended status bit to be set by modifying the OA_IMASKO register.

The OA_STATUS1 register contains vendor specific sources; its mask register is OA_IMASK1. This register contains the following bits that can trigger the extended status bit to be set and, if needed an interrupt.

• SEV - This bit is asserted when bits in the Synchronization Event Status (SEVSTS) register are set. Details are available in the Synchronization Support section.

- TTSCMA/B/C These bits are asserted when the SPI host requested that a timestamp be captured when a packet is transmitted, but the transmit timestamp capture was not triggered.
- TTSCOFA/B/C These bits are asserted when a timestamp was captured for a transmit packet as requested by the SPI host, but the previously captured transmit timestamp had not been read from the associated transmit timestamp capture register. The previously captured transmit timestamp was therefore overwritten and lost.
- UV18 This bit is asserted when an 1.8V supply under voltage condition is detected. Details are available in the Under Voltage Detection (1.8V Supply) section.
- ECC This bit is asserted when an SRAM ECC error has been detected. Details are available in the SRAM Error Correction Code (ECC) section.
- BUSER This bit is asserted when an internal bus error status has been detected. This may be due to an SRAM error or internal bus parity error. Details are in the SRAM Error Correction Code (ECC) and Bus Parity sections.
- FSMSTER This bit is asserted when an internal state machine has been detected making an invalid transition or transitioning into an invalid state. Details are available in the Internal Fault Detection section.
- TXNER, RXNER These bits are asserted when an non-recoverable transmit or receive error has occurred. Details are available in the Internal Fault Detection section.

Related Links

5.2.2. MAC Frame Receive Data Block Footer

11.1.6. OA STATUSO

11.1.7. OA STATUS1

11.1.9. OA IMASKO

11.1.10. OA_IMASK1

4.5.6. Synchronization Events

4.6.1.1.2. Under Voltage Detection (1.8V Supply)

4.6.2.1. SRAM Error Correction Code (ECC)

4.6.2.2. Bus Parity

4.6.2. Internal Fault Detection

4.4 Sleep Mode

The LAN8650/1 provides an ultra-low power (typically less than 140 μ W) sleep mode based on the OPEN Alliance TC10 specifications. In this mode, it will release the INH pin to allow shutdown of most external power supplies. Only the uninterrupted supply VDDAU remains active to monitor and react to user selectable wake events. After a wake event, INH is asserted and the remaining power supplies are re-enabled. Since the INH pin can control power supplies shared with other devices, this feature allows for an entire node to enter a low power state, and be awakened by external events.

This section will describe

- how the INH pin can be used to control the shutdown of power supplies, including using a delay feature
- how to select what events will wake the LAN8650/1 from sleep
- how to enter sleep mode, including how to configure activity timeouts, when used
- how the LAN8650/1 will behave upon wake and what actions are required

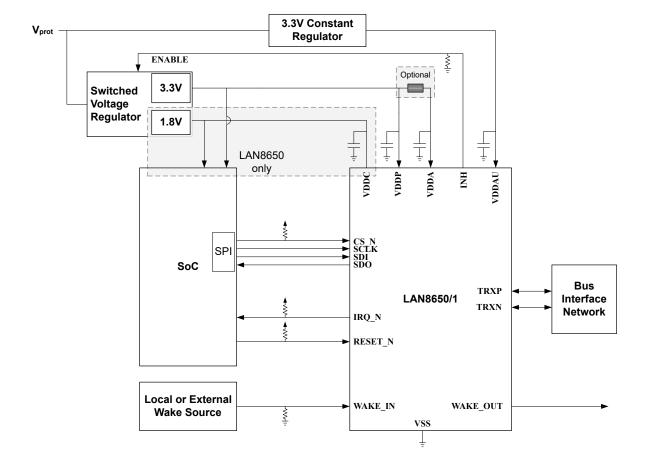
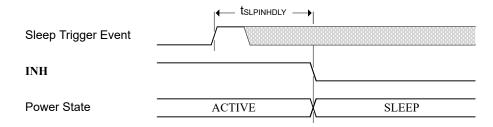

4.4.1 Sleep Mode and System Power Management

Figure 4-3 shows an example of how power should be supplied in a system that will use the low-power sleep mode of the LAN8650/1. In this diagram, VDDAU is provided by a constant supply, so that it is always enabled, even during sleep mode. On system power-up, once this supply is active,

the INH pin will be asserted so that its active high output can drive the enable pins of the external switchable supplies for VDDA, VDDP and, for the LAN8650, VDDC.

Figure 4-3. Sleep Mode Example System

After the device enters sleep mode, the INH pin will enter a high-impedance state. The external resistor will pull the signal down to ground, which will then disable any voltage sources controlled by INH. This can be used to disable power to additional devices, including, when needed, the station controller.



Important: Before entering SLEEP mode, the desired wake configuration must be configured in the LAN8650/1. It is recommended that this mode is configured immediately after a reset. Details can be found in the Configuring Wake section.

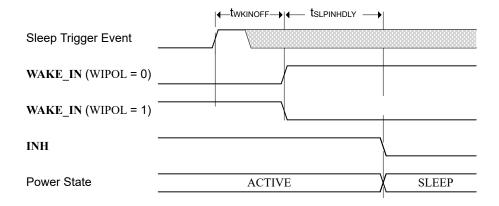

Some systems may require a delay between the trigger for the start of sleep mode and disable of the local power supplies, for example, to allow for other nodes on the mixing segment to go quiet. Delay timing is configured with the Sleep Inhibit Delay (SLPINHDLY) field of the Sleep Control 0 (SLPCTL0) register. If wake from the WAKE_IN pin is enabled (WKIEN=1), the WAKE_IN pin must be deasserted before the Sleep Inhibit Delay timer will be started. See Figure 4-4 for a diagram illustrating the timing from when SLEEP state is commanded until the INH pin is released and the SLEEP state is entered.

Figure 4-4. Sleep Timing

WKIEN = 0 or WAKE IN not asserted when sleep triggered

WKIEN = 1 and WAKE IN asserted when sleep triggered

In sleep mode, a small amount of current is drawn from VDDAU to monitor for a wake condition. The wake condition can be a WAKE_IN pulse provided from another device, or a signal on the wire harness from another node on 10BASE-T1S network. After a wake condition is detected, INH is actively driven high, enabling the external power supplies, which should be fully powered within 1 ms of INH being driven high according to the OPEN Alliance TC10 Wake/Sleep specification. Once all power supplies are above their thresholds, the LAN8650/1 will behave as if it had been reset by the RESET_N pin, and will assert IRQ_N to signal that the device is ready to be configured as described in the Startup Sequence section.

Important: To achieve maximum power savings and allow TC10 power goals to be met when in the SLEEP state, all power supplies except for VDDAU must be powered down.

Related Links

11.5.49. SLPCTL0

4.4.2 Configuring Wake-up

The sleep/wake module is powered by the externally protected continuous VDDAU supply and detects a wake condition when the device is in the SLEEP state. This module monitors activity energy on the MDI interface and/or wake pulses on the WAKE_IN pin to determine if the device has received wake-up signaling. Once wake-up signaling has been received and validated, this module will drive the INH pin high to the VDDAU supply to enable the external switched power supplies.

Prior to entering the SLEEP state, the station controller must configure the device to select one or both of these wake methods.

4.4.2.1 MDI Wake-up

The device may be configured to wake from activity on the MDI interface when in the SLEEP state. The device monitors activity energy on TRXP/TRXN. Continuous activity must be detected for a minimum amount of time to ensure that false positive wake events are not caused by impulse noise; this time is documented in the Wake Event Timing section. Once a valid wake event is detected, the INH pin is driven high to the VDDAU supply to re-enable external power supplies and wake the system.

Wake from MDI is enabled by writing a '1' to the MDI Wake Enable (MDIWKEN) bit in the Sleep Control 0 (SLPCTL0) register prior to entering the SLEEP state.

Note: In the LAN8650/1, MDI wake detection was not designed to meet the OPEN Alliance 10BASE-T1S Sleep/Wake-up Specification, version 1.0. Received energy that is of sufficient length that is detected either from other nodes transmitting onto the segment or from noise will trigger the device to wake when MDI wake-up is enabled.

Related Links

11.5.49. SLPCTL0

4.4.2.2 WAKE_IN Pin Wake-up

The device may be configured to wake from SLEEP when a valid pulse on the WAKE_IN pin is detected. As specified by the OPEN Alliance TC10 Wake/Sleep specification, pulses with durations of less than 10 μ s are ignored while pulses greater than 40 μ s in duration are recognized. Recognition of wake pulses between 10 μ s and 40 μ s is undefined. After determination of a valid pulse, the INH pin is driven high to the VDDAU supply to re-enable external power supplies and wake the system.

Wake-up from detection of a valid WAKE_IN pulse must be enabled by writing a '1' to the WAKE_IN Enable (WKINEN) bit in the Sleep Control 0 (SLPCTL0) register prior to entering the SLEEP state. The assertion level of the detected wake pulse is configured by setting the Wake In Polarity (WIPOL) bit in the Sleep Control 1 (SLPCTL1) register.

Restriction: Assertion of the WAKE_IN pin is only detectable when the device is in the SLEEP state. When awake and in ACTIVE state the device will not detect pulse assertions on the WAKE_IN pin.

Important: When wake from WAKE_IN is enabled, the device will not enter the SLEEP state while the WAKE_IN input is asserted. The WAKE_IN pin must be deasserted before the Sleep Inhibit Delay will occur followed by the INH pin being released and the SLEEP state entered. See Sleep Mode and System Power Management for more details.

Related Links

11.5.49. SLPCTL0

11.5.50. SLPCTL1

4.4.1. Sleep Mode and System Power Management

4.4.3 Entering Sleep Mode

After wake-up has been configured, the device may at any time be commanded to enter the SLEEP state. This may be done in one of two ways. The station controller may initiate a transition to SLEEP by writing a '1' to the Sleep Enable (SLPEN) bit in the Sleep Control 0 (SLPCTL0) register. Alternatively, the device may be configured to enter SLEEP automatically upon expiration of an inactivity watchdog as detailed below.

Related Links

11.5.49. SLPCTL0

4.4.3.1 Inactivity Watchdog

The device includes an inactivity watchdog timer that can be used to automatically command the device into the SLEEP state. The inactivity watchdog can be used to allow the system to reduce its power consumption when no activity is present on the network. It can also be used to detect when the controller has malfunctions and is no longer managing the device; in this case, the watchdog can be used to force the device into the SLEEP state to prevent the malfunctioning node from consuming power on an inactive network segment.

The inactivity watchdog can be configured to trigger on inactivity of three sources: no receive packets from the network, no transmit packets from the MAC, and no PHY register access by the controller. Each of these three inactivity sources may be enabled separately or together in any combination. Once enabled, the watchdog timer will be reset upon detected activity on any of the selected watchdog sources. When the watchdog expires, the Inactivity Watchdog Timeout (IWDTO) bit in the Status 2 (STS2) register will be set commanding the transition to the SLEEP state and initiating the Sleep Inhibit Delay timer. The Inactivity Watchdog Timeout Interrupt Mask (IWDTOM) bit in the Interrupt Mask 2 (IMSK2) register should be set to assert the PHY Interrupt (PHYINT) status bit in the OPEN Alliance Status 0 (OA_STATUS0) to immediately notify the station controller when the inactivity watchdog expiration occurs. Once the Inactivity Watchdog Timeout status bit is set, the controller may halt the pending SLEEP transition by clearing the Inactivity Watchdog Timeout status bit any time before the Sleep Inhibit Delay expires.

Before enabling the inactivity watchdog timer, the inactivity sources to be used for resetting the watchdog timer when activity occurs must be configured by setting the appropriate bits within the Port Management 2 (PRTMGMT2) register:

- Network packet receive inactivity Media Interface Receive Watchdog Enable (MIRXWDEN)
- MAC packet transmit inactivity Media Interface Transmit Watchdog Enable (MITXWDEN)
- PHY register access inactivity PHY Register Inactivity Watchdog Enable (PRIWDEN)

The 32-bit Inactivity Watchdog Timeout (TIMEOUT) field in the Inactivity Watchdog Timeout High/Low (IWDTOH/IWDTOL) registers configures how long the enabled inactivity sources must show no activity before the watchdog timer expires. The default setting for the Inactivity Watchdog Timeout yields an inactivity timeout of 2 seconds. When activity is detected on the inactivity sources, the watchdog timer is reset to the value in the TIMEOUT field. The watchdog timer then decrements every 200 ns. Should the watchdog timer decrement to zero, the Inactivity Watchdog Timer expires causing the Inactivity Watchdog Timeout (IWDTO) status bit to become set.

The watchdog is enabled by setting the Inactivity Watchdog Enable (IWDE) bit in the Control 1 (CTRL1) register after configuring the inactivity sources, the watchdog timeout, and enabling the Inactivity Watchdog Timeout Interrupt Mask.

Related Links

11.5.1. CTRL1

11.5.3. STS2

11.5.6. IMSK2

11.5.17. PRTMGMT2

11.5.18. IWDTOH

11.5.19. IWDTOL

11.5.49. SLPCTL0

4.4.4 Wake-up

After all of the power supplies of the LAN8650/1 are above thresholds, the device will be in a state similar to a power-on reset; this includes asserting IRQ_N to indicate that the device is ready for configuration. Unlike a power-on reset, after wake-up two registers will contain information about the wake event, and, if configured, wake forwarding will automatically send wake signals to additional devices. As after any reset, the device must be reconfigured, as described in the section Startup Sequence.

The host controller can identify that the device was powered up from a wake event, by examining the Wake Indication (WAKEIND) bit in the Sleep Control 1 (SLPCTL1) register. This bit will be set to '1' if the device was powered up from a wake event, otherwise it will be '0'. The Wake-up MDI (WKEMDI) and Wake-up WAKE_IN (WKEWI) status bits in the Status 2 (STS2) register are also set indicating the source of the wake event. Once the device has awakened, it will continue to drive the INH pin high causing the ECU to remain awake until the controller initiates a new transition into the SLEEP state. The device may optionally be configured to forward a received wake event to other devices by driving a wake pulse on WAKE_OUT and/or activity signaling on the MDI. The device wake/sleep configuration is reset to its default state upon wake-up and must be reconfigured as desired prior to sleeping again.

Important: After the LAN8650/1 has awakened, the controller must clear the Wake Indication (WAKEIND) bit to reset the wake activity detector prior to enabling entry into the SLEEP state again. This is accomplished by first writing the Clear Wake Indication (CLRWKI) bit in the Sleep Control 1 register to a '1' followed with a second write back to '0'.

Related Links

11.5.50. SLPCTL1 11.5.3. STS2

4.4.4.1 MDI Wake Forwarding

The device may be configured to generate activity signaling on the MDI upon wake from SLEEP due to a wake pulse on WAKE_IN. The wake signaling consists of a 1 ms transmission of differential Manchester encoded pseudo-random binary data. The device will not listen for activity on the network prior to transmitting the wake signaling.

Enabling of MDI wake activity forwarding is accomplished by setting the MDI Forward Enable (MDIFWDEN) bit of the Sleep Control 1 (SLPCTL1) register. Automatic forwarding of WAKE_IN wake events to the MDI must be configured prior to entering the SLEEP state.

Note: MDI wake signaling was not designed to meet the OPEN Alliance 10BASE-T1S Sleep/Wake-up Specification, version 1.0.

Related Links

11.5.50. SLPCTL1

4.4.4.2 WAKE OUT Pin Wake Forwarding

The WAKE_OUT pin may be configured to assert for 90 µs upon wake from SLEEP due to MDI activity or a wake pulse on WAKE_IN. Enabling of WAKE_OUT pin forwarding is accomplished by setting the WAKE_OUT Forward Enable (WKOFWDEN) bit of the Sleep Control 1 (SLPCTL1) register prior to entering the SLEEP state. Automatic forwarding of wake events to the WAKE_OUT pin must be configured prior to entering the SLEEP state.

Important: The WAKE_OUT pin operates from the VDDP power domain and therefore will only be asserted once the external VDDP supply has been powered.

Related Links

11.5.50. SLPCTL1

4.4.4.3 Manual Wake Assertion

While powered up in the ACTIVE state, the station controller may wish to initiate a wake-up event to the network and/or additional devices. This may be accomplished by triggering a manual wake forward event by writing a '1' to the Manual Wake Forward (MWKFWD) bit in the Sleep Control 1 (SLPCTL1) register. Once set, the device will initiate wake activity on the MDI if the MDI Wake Forward Enable (MDIWFWD) bit is set. Additionally, or alternatively, a wake pulse may be initiated to the WAKE_OUT pin if the WAKE_OUT Forward Enable (WKOFWDEN) bit is set. Once the wake events have completed, the device will clear the Manual Wake Forward bit.

Related Links

11.5.50. SLPCTL1

4.5 Synchronization Support

The LAN8650/1 contains several features to support system synchronization, including time sensitive networking. These features include

- Wall Clock derives the time from the reference clock
- Packet Timestamping provides timestamping of packets on ingress and egress
- Event Capture captures timestamps of events from DIO pins or selected network events
- Event Generation generates signals synchronized to the reference clock
- · Phase Adjust enable adjustments of the wallclock smoothly and with minimal SPI cycles

The event capture, event generation and phase adjust features have a common interface that can be used for monitoring status and, where desired, triggering an interrupt to the station controller.

The reference clock for synchronization can be either the local 25 MHz clock, as described in the Clock Manager Section, or an external clock provided on pin DIOB0. The reference clock can be selected using the Reference Clock Select Bit (REFCLKSEL) of the Pad Control Register (PADCTRL).

Related Links

4.2. Clock Manager 11.6.3. PADCTRL

4.5.1 Wall Clock

The wall clock is used for timestamps for inbound and outbound packets in the MAC and in the event capture unit, as well as for the time references used in the event generator. It is implemented as part of the MAC, so it can be configured and adjusted via accesses in MMS1.

The wall clock is implemented as a timer which increments each tick of the reference clock. The timer contains 94 bits where:

- The 48 upper bits [93:46] represent seconds
- The 30 lower bits [45:16] represent nanoseconds. This field resets to 0 at the end of each second.
- The lowest 16 bits [15:0] of the timer count sub-nanoseconds. This field resets to 0 at the end of each nanosecond.

Event capture and event generation use all 48 seconds bits and all 30 nanoseconds bits. Packet time stamps accessed using the built-in features of the SPI protocol will use the least significant seconds bits, as shown in the Ethernet Frame Timestamping Section.

To set the wallclock,

- Set the upper 16 bits of the wall clock seconds in the TSU Timer Seconds High (MAC_TSH) register
- Set the lower 32 bits of the wall clock seconds in the TSU Timer Seconds Low (MAC TSL) register.
- Set the wall clock nanoseconds in the TSU Timer Nanoseconds (MAC_TN) register.
- The wall clock sub-nanosecond portion is not set or read directly.

In addition to setting the clock time, it is also necessary to set the amount of time the clock increments on each tick of the reference clock. The nanosecond portion of the increment is set in the TSU Timer Increment (MAC_TI) register, while the sub-nanosecond portion is set using the TSU Timer Increment Sub-Nanoseconds (MAC_TISUBN) register. The LAN8650/1 uses a 25.0 MHz timer clock source and requires that the timer increment by 40.0 ns for each clock period. This is programmed by writing the value 0x00000028 to the TSU Timer Increment (MAC_TI) register. The sub-nanosecond register is not needed on initial configuration, but can be used when synchronizing the wall clock to an external clock source.

Related Links

5.2.5. Ethernet Frame Timestamping

11.2.20. MAC_TSH

11.2.21. MAC_TSL

11.2.22. MAC_TN

11.2.24. MAC_TI

11.2.19. MAC_TISUBN

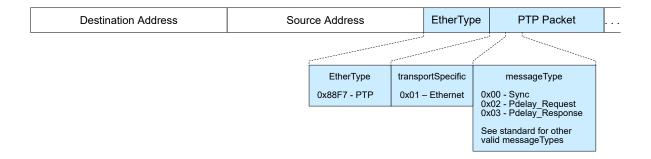
4.5.2 Packet Timestamps

IEEE Std 1588 describes the Precision Time Protocol (PTP), which enables synchronization of clocks over a network. In order to use PTP to synchronize the wall clock of the LAN8650/1 to an external clock source, or to use the wall clock as a clock source for other devices, it is necessary to have accurate timestamps for the receipt and transmission of packets.

4.5.2.1 Introduction to IEEE 802.1AS / IEEE 1588

Many end applications that are run on a network require a common sense of time; these are often called time-aware. Input sensor data needs timestamping for processing and analysis; motor and brake controls must be synchronized to control machines; chimes and lights are coordinated for a better user experience. IEEE Std 1588 describes the PTP protocol, which is used to synchronize clocks across a network. PTPv2 is a feature rich standard that allows for many variations, not all of which are compatible. IEEE Std 802.1AS specifies a subset of PTP, a PTP profile, called generalized Precision Time Protocol (gPTP) which is increasingly used in embedded systems. gPTP uses only layer 2 (Ethernet) synchronization, which relies on the precise timestamping of specific packets used to distribute clock and delay information across a network.

In a time-aware network, any given network segment, including a 10BASE-T1S multidrop segment, has one clock source. This source can be any element on the segment or it can be a time-aware bridge, which is synchronized to the main system clock elsewhere on the network. The clock source periodically broadcasts the current system time using the PTP SYNC message and captures the exact time that the message is transmitted. The timestamp for the SYNC message is then provided to the clock followers, either directly in the SYNC packet, or in a separate FOLLOWUP packet. Other time


aware devices on the network segment capture the time that the SYNC message arrives and use that, along with the information from the FOLLOWUP message when needed, to adjust their local clocks to match that of the clock source. In a time aware system with known, fixed network delays, it is possible to achieve very accurate clock synchronization with just these messages.

To account for network delays when they are not known, PTP includes peer delay message types, which are used in a similar manner to calculate the delay between the local clock source and each element on the segment. One of these messages, PDELAY_REQUEST requires precision timestamping on egress from the network element and ingress to the local clock master, similar to that required on the SYNC message. The algorithm which calculates the delay between peers assumes that the delays are constant and symmetric; it can compensate for any fixed delay, including timestamping a packet at a fixed point later than the standard end of Start-of-Frame Delimiter (SFD).

4.5.2.1.1 PTP Message Format

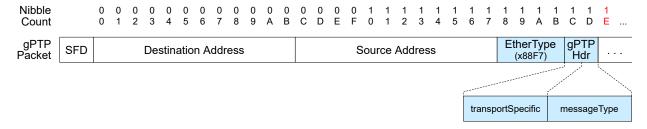
PTP messages are transmitted in a standard Ethernet frame, which starts after the SFD with 6 bytes of Destination Address, and 6 bytes of source address. The next 2 bytes are the EtherType field, which indicates which protocol the payload represents. An EtherType field of 0x88F7 indicates that the packet is PTP over Ethernet. The next byte is fixed at 0x01 for PTP over Ethernet. The byte that follows is the PTP message type; the message types of interest are shown in Figure 4-5

Figure 4-5. Start of a PTP over Ethernet Frame

4.5.2.1.2 PTP and 10BASE-T1S

Effective time synchronization can be run over 10BASE-T1S networks. There are two issues that need to be considered during implementation.

- When using delay calculations, timestamps need to be taken where the delay is constant. The timestamp for packet transmission normally occurs at the end of the SFD on the internal MII interface. When the MAC delivers the packet to a 10BASE-T1S PHY, however, there is a variable delay through the PHY when PLCA is enabled. PLCA requires the PHY to delay transmission of a packet until the next PLCA transmit opportunity. To have a constant delay, the transmit timestamp needs to be taken after the PLCA. Considering the receive timestamp, the MAC will only be able to create a timestamp to the resolution of the clock for the inbound data signal from the PHY, which is 400 ns on the internal MII. The solution to both of these problems is to use the signal on the MDI to determine when to timestamp. The remainder of this section will discuss features of the LAN8650/1 which enable this type of timestamping.
- While 802.1AS clearly defines the Sync and PDelay methods for full-duplex Ethernet links, there
 is not yet a clear definition for a shared medium, like 10BASE-T1S when used with PLCA in
 multidrop mode. All of the message types above are currently defined as multicast. Software
 workarounds to existing PTP processing are required until the standards are adapted for
 multidrop segments. These workarounds are beyond the scope of this document.



4.5.2.2 PHY Timestamping

To ensure that the variable delay is not captured in the timestamp of the LAN8650/1, the MAC does not capture a timestamp based on the time that the Start-of-Frame Delimiter (SFD) crosses the MII interface to the PHY. Instead, it receives a signal from the PHY indicating that the end of the SFD has been transmitted or received on the MDI and uses that to capture the timestamp for all packets when enabled using the SPI protocol. In a busy network, or when using an inexpensive microcontroller, it may not be desirable to timestamp every packet. The LAN8650/1 adds the ability to selectively timestamp on packets that match a desired pattern, such as PTP Sync or other PTP messages.

The pattern matcher will indicate a match for a bit pattern of up to 24 bits at a configured number of nibbles after the SFD. As an example for configuring the pattern matcher, consider the SYNC message format within a MAC frame. As shown above in PTP Message Format, the EtherType field will contain 0x88F7, followed by the transport specific nibble containing 0x1 and a messageType nibble of 0x0. The 24 bit pattern to be matched is then 0x88F710. These will be located immediately after the Destination Address, and Source Address Fields of the Ethernet packet, which means that they are found in nibbles 24 through 29 of the packet. The pattern matcher location is configured as the first nibble after the location of the desired match, so for any gPTP messageType, the location will be 30.

Figure 4-6. PTP Packet Pattern Matching

To configure a match on SYNC message in a transmitted packet:

- Write the location value of 30 into the Transmit Match Location (TXMLOC) register.
- Write the top 8 bits of the desired pattern, 0x88, into the Transmit Match Pattern High (TXMPATH) register.
- Write the bottom 24 bits of the desired pattern, 0xF710, into the Transmit Match Pattern Low (TXMPATL) register,
- Write all 0's into the Transmit Match Mask High and Low (TXMMSKH/TXMMSKL) register mask fields so that all 24 bits of the pattern are matched.
 - Setting bits to a '1' will cause the corresponding pattern bit to be ignored during a match. This can be used to allow for multiple messageTypes, for example.
- Enable the pattern matcher by setting the Transmit Packet Match Enable (TXME) bit in the Transmit Match Control (TXMCTL) register.
- Request time stamps via the SPI protocol.

Matching receive packets operates in a similar manner, except the receive case uses the Receive Match Location (RXMLOC) register, Receive Match Pattern High (RXMPATH) register, Receive Match Pattern Low (RXMPATL) register, Receive Match Mask High (RXMSKH) Register, Receive Match Mask Low (RXMSKH) register, and Receive Packet Match Enable (RXME) bit in the Receive Match Control (RXMCTL) register.

When the pattern match location is set to zero and the 24-bit pattern match mask is to all 1's (0xFFFFFF), then every packet will be matched at the SFD and will be timestamped when requested by the SPI protocol. This configuration is not the default configuration of the hardware, but is the default configuration set by all Microchip drivers and in the LAN8650/1 Configuration Application

Note, www.microchip.com/DS60001760. When using the packet filter, these register values may be configured as needed.

Related Links

11.5.25. TXMLOC

11.5.21. TXMPATH

11.5.22. TXMPATL

11.5.23. TXMMSKH

11.5.24. TXMMSKL

11.5.20. TXMCTL

11.5.32. RXMLOC

11.5.28. RXMPATH

11.5.29. RXMPATL

11.5.30. RXMMSKH

11.5.31. RXMMSKL

11.5.27. RXMCTL

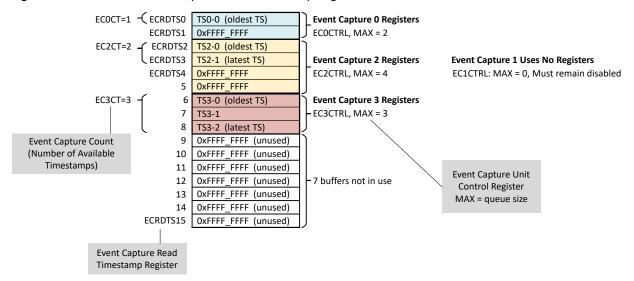
4.5.3 Event Capture

The event capture unit can simultaneously monitor up to 4 sources and capture the wallclock time at which the configured event occurs. Each event has its own configuration register. To enable efficient use of SPI bandwidth, all resulting status and timestamps are available in a group of sequentially accessed registers. This allows for use of the autoincrement feature to burst read all of the required registers.

The Event Capture 0 Control Register (ECOCTRL) determines the input source for the event, the desired signal edge and the maximum number of timestamps that can be stored before overflow; these parameters can only be changed while the time stamper is disabled. This register is used to start and stop the time stamper, as can also be used to reset a time stamper without completely stopping it. The other capture units have their own control registers (EC1CTRL, EC2CTRL and EC3CTRL).

The common registers indicate the status of all of the event capture units. A read of the Event Capture Read Status Register (ECRDSTS) will report the number of valid timestamps stored and any overflow conditions; but it will also update all of the event capture registers that follow. These following registers will hold their values until the next time ECRDSTS is read. This enables a consistent view of the timestamps across many SPI clock cycles. All time stampers will continue to capture new time stamps as long as there is storage available even though these interface registers are not updated.

After the ECRDSTS, the next register is Event Capture Total Counts Register (ECTOT). This contains an 8-bit running count of the number of captured timestamps. These values roll over from 255 to 0.


The next three registers, Event Capture Clock Seconds High (ECCLKSH), Event Capture Clock Seconds Low (ECCLKSL), and Event Capture Clock Nanoseconds (ECLKNS), together contain the clock time stored in the MAC Timestamp Unit. In a IEEE 802.1AS, or similar, synchronized system, this clock will be synchronized to the network clock. The value is captured at the time ECRDSTS is read, and is stored with 48 bits for seconds and 30 bits for nanoseconds. This value can be combined with the captured time stamps below to determine the exact network time for any particular time stamp.

There are 16 total timestamp storage registers available; an active event capture unit shall use at least one, and the total configured by use for all four units shall not exceed 16. For event capture unit *n*, these are configured using the MAX field of the Event Capture *n* Control (EC*n*CTRL) register. The registers occupied by event capture unit 0, if used, will start with ECRDTS0, then those used by unit 1 and so on. Figure 4-7 illustrates an example where event capture unit 0 is configured to use two registers, while unit 1 will use 10 registers and unit 3 will use three registers. Unit 2 has

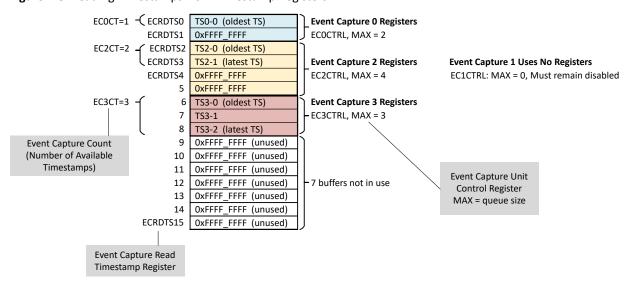

no registers and therefore shall never be enabled. To avoid loss of data in this shared resource, the MAX field of any ECnCTRL register should only be changed if all time stampers are disabled.

Figure 4-7. Allocation of Event Capture Read Timestamp Registers

When reading out this memory space, the MAX field of ECnCTRL contains the number of registers used for event capture unit *n*, while the ECnCT field of ECRDSTS contains the actual number of valid time stamps currently stored for that unit. If a given event capture unit has more than one read register in use, the oldest timestamp will be at the lowest address. Any registers that do not contain valid timestamps will contain the value 0xFFFF_FFFF. An example is shown in Figure 4-8, where unit 0 has a maximum of two timestamps, unit 2 has a maximum of four timestamps and unit 3 can have up to three timestamps. When ECRDSTS was read, it indicated a count of 1 timestamp for unit 0, so ECRDTS0 contains a timestamp and ECRDTS1 contains 0xFFFF_FFFF. There are 2 timestamps from unit 2, so the oldest is in ECRDTS2 and the newer one is in ECRDTS3, with 2 invalid registers following. There are 3 timestamps from unit 3, which use register ECRDTS6-8, with the oldest in ECRDTS8. If one more timestamp is captured before EDRDTS6 is read, there will be an overflow condition and the new timestamp will not be saved.

Figure 4-8. Reading Timestamps from Timestamp Registers

When capture unit 0 captures a timestamp and has data available, the Event Capture 0 Data Available (ECODA) bit in the Synchronization Event Status Register (SEVSTS), will be set. Should unit 0 be unable to save a timestamp due to an overflow, it will set the Event Capture 0 Overflow (ECOOF) bit in SEVSTS. There are Event Capture Data Available and Overflow bits for each of the other capture units also located in the SEVSTS register.

Related Links

11.6.12. ECOCTRL

11.6.13. EC1CTRL

11.6.14. EC2CTRL

11.6.15. EC3CTRL

11.6.16. ECRDSTS

11.6.17. ECTOT

11.6.18. ECCLKSH

11.6.19. ECCLKSL

11.6.20. ECCLKNS

11.6.21. ECRDTSn

11.6.52. SEVSTS

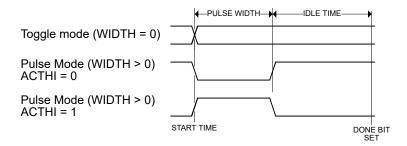
4.5.4 Synchronized Event Generator

The event generator can produce up to 4 different pulse outputs at once all synchronized to the internal wall clock. In addition, it can generate a separate, synchronized 1 Pulse-per-second (1PPS) signal.

4.5.4.1 Configurable Event Generation

There are 4 configurable event generators, each of which can generate a single pulse or a pulse sequence derived from the same wall clock used for timestamp generation. The generated signals can be routed to the DIO pins to synchronize external devices. In addition, event generator 0 can be used to provide an internal source for ACMA. The routing of the output pulses is configured in the PADCTRL register.

All of the event generators have the same control interface. The following example uses Event Generator 0 (EG0). The names of the control registers for the other event generators begin with EG1, EG2 and EG3.


All pulses and pulse sequences begin at a programmed start time. The time is in the same format used in the MAC Time Stamping Unit: 48 bits represent seconds and 30 represent nanoseconds. The most significant 16 bits of the start time in seconds are set in the Event 0 Start Time Seconds High register while the remaining 32 bits of the start time in seconds are in the Event 0 Start Time Seconds Low register and the nanosecond portion is set in the Event 0 Start Time Nanoseconds register. If the event generator is configured for absolute time, the pulse will start when the time stamp clock matches the start time. In relative mode, actual start time is the value of the time stamp clock at the time the start bit is set in the control register plus the value in the start time registers. Relative mode is selected by setting the ISREL bit of the EGOCTL register.

The pulse width in nanoseconds is set in the EGOPW register, and the idle time is set in the EG0IT register. The pulse can be configured as active high or active low using the AH bit in the EGOCTL register.

Single pulse mode is selected by clearing the REP bit in the EGOCTL register. The timing for single pulse mode is shown in Figure 4-9. Once enabled by setting the START bit in EGOCTL, the signal will be deasserted until the start time, then deasserted at the start time plus the pulse width. If the pulse width is 0, the signal will only change value at the start time. In either case, signal generation is complete and the EG0DONE bit is set in the Synchronization Event Status (SEVSTS) register at start time plus pulse width plus idle time. Other event generators will control the EG1DONE, EG2DONE or EG3DONE bits of SEVSTS.

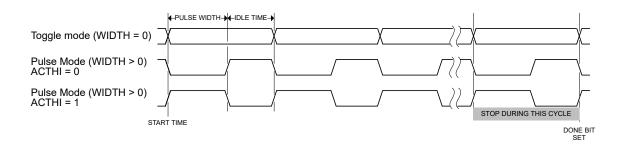


Figure 4-9. Single Pulse Timing Parameters

If the REP bit in the EGOCTL register is set, the pulse will repeat, as shown in Figure 4-10. Toggle mode signals will change value after a period equal to idle time. The pulses will continue until they are stopped by writing to the STOP bit of the EGOCTL register. The event will stop at the end of the next idle time. For a repeating signal, the EGODONE bit in the SEVSTS register is set once, when the event stops.

Figure 4-10. Repeating Pulse Timing

Note: Event configuration is stored on START. Changes will have no effect on a running signal. The event must indicate DONE, before it can be reconfigured and restarted.

Related Links

11.6.3. PADCTRL

11.6.29. EGOCTL

11.6.26. EG0STSECH

11.6.25. EG0STSECL

11.6.24. EGOSTNS

11.6.27. EG0PW

11.6.28. EG0IT

11.6.52. SEVSTS

4.5.4.2 One Pulse-per-second Signal Generation

The device can provide a one pulse-per-second (PPS) clock, synchronized to the time stamp clock. This signal can be provided on pin DIOA4 when selected in the register DIOMUX. The One Pulse-per-Second Control Register (PPSCTL) is used to configure the pulse width and enable and disable generation of the signal. The pulse width cannot be changed while enabled; disable signal generation and wait for the signal to stop before changing the pulse width. When the signal has been disabled, the output will continue to be driven low until the end of the second. At this time, the output will stop and the PPSDONE bit in the SEVSTS register will be set.

11.6.48. PPSCTL 11.6.52. SEVSTS

4.5.5 Phase Adjuster

When keeping a clock synchronized to an external clock source, it is necessary to regularly adjust the phase of the local clock. For example, in systems using the PTP SYNC message, this is usually sent from the clock source a few times a second, to enable local clocks to maintain alignment. When this message is received, early in clock acquisition, adjustments on the order of seconds may be needed. Very quickly, the systems will become better synchronized, but even then, it is not uncommon to need to make adjustments on the order of tens of nanoseconds. The time stamping clock of the internal MAC can be adjusted by single nanoseconds or single seconds. This requires many writes from the host to obtain and keep synchronization with the external source. The phase adjuster simplifies the programming on the controller, and additionally allows the change to be distributed over many clock cycles, smoothing out clock jitter and miminizing potential for inconsistent local timestamps.

The simplest way to use the phase adjuster is to write to the Phase Adjuster Control Register (PACTRL). This register enables selection of the clock delta, identifies whether it is in units of nanoseconds or of seconds, and if nanoseconds, whether the delta should be added or subtracted. When the phase adjuster is enabled by setting the Phase Adjust Active (ACT) bit, the clock time will be adjusted by one nanosecond (or one second) every clock cycle, for delta cycles. The ACT bit will be cleared at the end of the adjustment and the PADONE bit will be set in the Synchronization Event Status Register (SEVSTS). See the Synchronization Events section for more information on using this register.

If this value is only updated a few times a second, these adjustments could cause significant clock jitter, and large negative deltas could cause unexpected values in timestamps generated elsewhere in the system. To smooth out these changes and minimize jitter, the adjustments can be applied over many clock cycles, instead of at every clock edge. In this case, the Phase Adjuster Cycles Register (PACYC), should be written with the number of clock cycles between updates. This should be done before activating the adjuster via PACTRL.

As an example, suppose the clock needs to be sped up (decremented) by 25 nanoseconds. This could be done in 3 ways:

- 1. Without using the phase adjuster, write to the MAC 25 times.
 - This will need to be done over SPI, and in a system with network traffic may not be done before the next SYNC packet arrives and a new clock adjustment is calculated.
- 2. Using the phase adjuster, without using PACYC
 - Write PACTRL: DIF = 25, SEC = 0, DEC = 1 and ACT = 1 to decrement the clock 25ns, one ns per clock cycle (typically 40 ns).
 - This will take 25 timestamp clock cycles (typically 1 μ s) to complete before the ACT bit is cleared. This entire period will exhibit additional clock jitter.
 - This requires one SPI control write.
- 3. Use PACYC as well as PACTRL.
 - Write PACYC with the number of clock cycles between adjustments. Suppose this is 100.
 - Write PACTRL: DIF = 25, SEC = 0, DEC = 1 and ACT = 1 to begin to decrement the clock 25ns, one ns per 100 clock cycles.
 - This will take 2500 timestamp clock cycles (typically 100 μ s) to complete before the ACT bit is cleared. 1% of the cycles will exhibit extra clock jitter.
 - This requires one SPI control write of 2 consecutive addresses.

11.6.23. PACTRL 11.6.22. PACYC

11.6.52. SEVSTS

4.5.6. Synchronization Events

4.5.6 Synchronization Events

To determine which event(s) have occurred since the last read, read the Synchronization Event Status Register (SEVSTS). This register is cleared upon read, so software should ensure that all valid sources are checked when processing the data.

The events that are reported in the SEVSTS register can selectively be used to set the SEV bit of the OA_STATUS1 register, which can be polled or configured as an interrupt. To enable a particular interrupt source to set the SEV bit, write a 1 to its corresponding bit in the Synchronization Event Interrupt Enable Register. To disable an interrupt source, write a 1 to its corresponding bit in the Synchronization Event Interrupt Disable Register. The registers are W1S registers, so a single bit can be changed without affecting other interrupt sources. It is possible to determine whether an individual event will set the SEV bit of the SEVSTS register by reading the Synchronization Event Interrupt Mask Register.

Related Links

11.6.52. SEVSTS

11.1.7. OA STATUS1

11.6.49. SEVINTEN

11.6.50. SEVINTDIS

11.6.51. SEVIM

4.6 Safety Features

The LAN8650/1 implements a number of features for use in ISO 26262 functional safety applications. These safety features are described on the following pages. Additional information on using these features in safety critical systems is available in a Functional Safety Manual. For more information on the LAN8650/1 Functional Safety Manual, please contact Microchip.

4.6.1 Safety Notifications

The LAN8650/1 may be configured to perform temperature and voltage monitoring and alert the station controller when operational parameters are at risk of being exceeded. This section describes the monitoring of power supplies and die junction temperature for safe operation within operational limits as well as network related system issues.

4.6.1.1 Under Voltage Detection

The LAN8650/1 is able to detect a brown-out condition on each of the 1.8V and 3.3V power supplies. Details for monitoring each of the power supplies is contained in the following sections.

4.6.1.1.1 Under-Voltage Detection (3.3V Supply)

The device is able to detect a voltage source brown-out condition. The under-voltage condition is triggered when the VDDA or VDDAU supplies drop below a 3.05V (-7.5% nominal) threshold causing the assertion of the 3.3V supply Under-Voltage (UV33) status bit in the Status 2 (STS2) register. If the interrupt status is not masked via the 3.3V Under-Voltage Interrupt Mask (UV33M) bit in the Interrupt Mask 2 (IMSK2) register, the PHY Interrupt status (PHYINT) bit in the OPEN Alliance Status 0 (OA_STATUS0) register will assert. The 3.3V Under-Voltage status bit will not be cleared until the supply voltage rises above the minimum threshold.

To prevent false brown-out detection due to power supply noise, the supply voltage must remain below the minimum threshold for greater than 200 µs before the under-voltage condition will be triggered. The debounce time may be adjusted by configuring the 3.3V supply Under-Voltage Filter Time (UV33FTM) field of the Analog Control 5 (ANALOG5) register.

11.5.3. STS2 11.5.6. IMSK2 11.5.55. ANALOG5

4.6.1.1.2 Under Voltage Detection (1.8V Supply)

The under-voltage condition is triggered when the 1.8V core supply drops below a 1.665V (-7.5% nominal) threshold causing the assertion of the 1.8V supply Under-Voltage (UV18) status bit in the OPEN Alliance Status 1 (OA_STATUS1) register. In case of the 1.8V supply, both the LAN8650 externally sourced and the LAN8651 internally generated LDO 1.8V supplies are monitored. If the interrupt status is not masked via the 1.8V Under-Voltage Interrupt Mask (UV18M) bit in the OPEN Alliance Mask 1 (OA_MASK1) register, the IRQ_N pin will assert. The 1.8V Under-Voltage status bit will not be cleared until the supply voltage rises above the minimum threshold.

To prevent false brown-out detection due to power supply noise, the supply voltage must remain below the minimum threshold for greater than 5.12 µs before the under-voltage condition will be triggered. The debounce time may be adjusted by configuring the 1.8V supply Under-Voltage Filter Time (UV18FTM) field of the Miscellaneous (MISC) register.

Related Links

11.1.7. OA_STATUS1 11.1.10. OA_IMASK1 11.6.5. MISC

4.6.1.2 Over-Temperature Detection

A mechanism is provided within the device to detect when the die junction temperature exceeds a threshold. As shown in Table 4-2, there is a rising and falling die temperature threshold. The over-temperature condition is triggered when the rising temperature threshold is exceeded causing the assertion of the Over-Temperature Error (OT) status bit in the Status 2 (STS2) register. If the interrupt status is not masked via the Over-Temperature Error Interrupt Mask (OTM) bit in the Interrupt Mask 2 (IMSK2) register, the PHY Interrupt status (PHYINT) in the OPEN Alliance Status 0 (OA_STATUS0) register will assert. The Over-Temperature Error status bit will not be cleared until the die temperature falls below the falling temperature threshold.

Regardless of the state of the Over-Temperature Error status bit, the device disables this function when in the SLEEP power state and the PHYINT status bit will not be asserted.

Table 4-2. Over-Temperature Thresholds

Description	Symbol	Min	Max	Units
Die Junction Over-Temperature Threshold				
Rising Temperature	T_{wh}	135	154	°C
Falling Temperature	T _{wl}	121	139	°C

Note: This table contains characterization data from a limited number of representative devices. The values are measured values and are not guaranteed.

Related Links

11.5.3. STS2 11.5.6. IMSK2

4.6.1.3 Transmit Jabber

Network communication may become blocked if a device fails in such a mode as to become stuck in the transmit state continually driving the shared bus, i.e., "jabber". To help guard against this failure mode the LAN8650/1 is designed with a transmit jabber watchdog. Should the PCS block remain in the transmit state for longer than 2 ms the jabber watchdog will trigger. When the transmit jabber watchdog triggers, the PCS will transmit special ESDERR End-of-Stream Error ESDJAB End-of-Stream

Jabber Delimiter codes to the network followed by disabling the transmitter. Additionally, the Jabber Detection Status (JAB_DET) bit in the Clause 22 Basic Status (BASIC_STATUS) register will be set along with the Transmit Jabber Status (TXJAB) status bit in the Status 1 (STS1) register. If the Transmit Jabber Status interrupt status is not masked via the Transmit Jabber Interrupt Mask (TXJABM) bit in the Interrupt Mask 1 (IMSK1) register, the PHY Interrupt status (PHYINT) bit in the OPEN Alliance Status 0 (OA_STATUS0) register will assert.

Once a transmit jabber condition has been detected, the PCS will wait 16 ms before attempting another transmission. The transmit jabber watchdog is reset between packets transmitted with PLCA burst mode enabled.

Since a device terminates a jabber transmission with a special ESDJAB End-of-Stream Jabber Delimiter code, all receiving devices can detect when a remote device has jabbered. When the LAN8650/1 detects a remote transmit jabber error occurred on a remote device, the Remote Jabber Count (RMTJABCNT) field in the 10BASE-T1S PCS Diagnostic 1 (T1SPCSDIAG1) register will be incremented. In addition, the End-of-Stream Error Delimiter (ESDERR) status bit in the Status 1 (STS1) register will set. If enabled by clearing the End-of-Stream Error Delimiter Mask (ESDERRM) bit in the Interrupt Mask 1 (IMSK1) register, the PHY Interrupt status (PHYINT) bit in the OPEN Alliance Status 0 (OA STATUS0) register will assert when a remote jabber condition has been detected..

Related Links

11.1.18. BASIC STATUS

11.5.2. STS1

11.5.5. IMSK1

11.3.3. T1SPCSDIAG1

4.6.1.4 Transmit Collisions

By their very nature, transmitters on pure CSMA/CD networks (without PLCA) will at times collide at a rate dependent on the utilization of the network traffic on the mixing segment collision domain. As a result, many media access controllers (MACs) include collision counters so the station controller can monitor the performance of the network segment. When PLCA is enabled the physical collisions of multiple transmitters are avoided. While PLCA prevents collisions on the physical media, as a part of normal operation the PLCA RS will at times assert a logical, or false, collision to the MAC to align the MAC's transmission with the PHY's transmit opportunity.

These PLCA logical collisions will be counted by a MAC collision counter and lead the station controller to the wrong conclusion about the state of collisions on the network segment. The LAN8650/1 therefore contains a physical collision counter. The station controller can monitor the number of physical collisions the PHY has encountered when transmitting packets onto the network by reading the Corrupted Transmit Count (CORTXCNT) in the 10BASE-T1S PCS Diagnostic 2 (T1SPCSDIAG2) register. Additionally, when the PHY detects a collision while transmitting the Transmit Collision Status (TXCOL) bit in the Status 1 (STS1) register is set. If the Transmit Collision Interrupt Mask (TXCOLM) is enabled in the Interrupt Mask 1 (IMSK1) register then the PHY Interrupt status (PHYINT) bit in the OPEN Alliance Status 0 (OA_STATUS0) register will assert. In a properly configured and operating PLCA mixing segment, no transmit collisions should be detected and the transmit collision counter should remain zero.

Related Links

11.3.4. T1SPCSDIAG2

11.5.2. STS1

11.5.5. IMSK1

4.6.1.5 PLCA Notifications

The LAN8650/1 has the ability to detect the following PLCA error conditions and assert interrupts, if enabled. For details, please refer to the 7.2.4. Physical Layer Collision Avoidance (PLCA) Diagnostics section.

Table 4-3. PLCA Notifications

Notification	Register.Bit	Description
PLCA Status	STS1.PSTC	PLCA Status Changed
Receive in TO	STS1.RXINTO	Packet received in assigned transmit opportunity
Unexpected Beacon	STS1.UNEXPB	A Beacon was received from another device on the bus
Beacon before TO	STS1.BCNBFTO	A Beacon was received before the local transmit opportunity occurred
Maximum TO	PRSSTS.MAXID	Number of transmit opportunities in the last PLCA cycle
TO Counter	TOCNTH/TOCNTL	Number of assigned transmit opportunities that have occurred
Beacon Counter	BCNCNTH/BCNCNTL	Number of received Beacons (PLCA cycles)

7.2.4. Physical Layer Collision Avoidance (PLCA) Diagnostics

11.5.2. STS1

11.5.16. PRSSTS

11.5.8. TOCNTH

11.5.9. TOCNTL

11.5.10. BCNCNTH

11.5.11. BCNCNTL

4.6.2 Internal Fault Detection

The LAN8650/1 includes the ability to detect various internal faults. These faults may be the result of signal noise, electromagnetic interference, high-energy particle radiation, or a latent device defect. When these faults occur the device can perform a safe action and alert the host controller to the fault for additional action in safety critical applications.

Finite state machines related to the transfer of packet data have the ability to detect an invalid transition or a transition into an invalid state. When these faults are detected, the Finite State Machine State Error (FSMSTER) status bit in the OPEN Alliance Status 1 (OA_STATUS1) register is set. If enabled, the setting of this bit will generate an interrupt to the host controller. When this fault occurs, the host controller must perform a hardware or software reset of the device.

Errors in the internal processing of transmit and receive Ethernet frames through the device are also detectable. When an internal error is detected on the transfer of a transmit frame from the SPI to the integrated MAC, the Transmit Non-recoverable Error (TXNER) status bit in OA_STATUS1 is set. Similarly, errors detected on the transfer of receive frames from the MAC to the SPI will set the Receive Non-recoverable Error (RXNER) status bit. When these faults occur, the transfer of Ethernet frames through the device is halted. If enabled, the setting of these bits will generate an interrupt to the host controller which must then perform a hardware or software reset of the device.

Additional fault detection features are described in the following sections.

Related Links

11.1.7. OA_STATUS1 11.1.10. OA_IMASK1

4.6.2.1 SRAM Error Correction Code (ECC)

The LAN8650/1 contains an internal 8 kB SRAM that is used for the internal buffering of transmit/ receive Ethernet frames as well as buffer queue management structures. The corruption of a single SRAM bit can result in a corrupt Ethernet packet or undefined behavior when the corrupted bit

occurs in a buffer queue manager memory. Safety critical applications cannot tolerate any memory corruption.

The SRAM controller implements a Single Error Correction, Double Error Detection (SECDED) error correction and detection circuit. The 8 kB memory is implemented as a 2 k word x 39 bit SRAM. Each word of the SRAM consists of 32 bits of data plus 7 bits of parity. Six of these bits are used as Single Error Correction parity bits, or SEC parity. These 6 parity bits allow for the detection of bit errors in the 32-bit data word. If only a single bit is corrupted, the syndrome calculated from the SEC parity indicates which bit of the 32-bit word was corrupted. The SRAM controller will then flip the corrupted bit, providing the correct data value onto the bus. The seventh parity bit is a Double Error Detection parity bit, or DED parity. When the SEC parity indicates a corrupted data word, the DED parity indicates if only a single bit of the data word was corrupted, and therefore correctable, or if more than 2 bits were corrupted. The corruption of two or more bits can only be detected; they cannot be corrected.

Note: If the data word is likely to have more than two bits corrupted, false negatives may occur.

The SRAM ECC is enabled by default. To disable the SRAM ECC, the parity encoder and decoder must be disabled. This is accomplished by setting the ECC Encoder Disable (ENCDIS) and ECC Decoder Disable (DECDIS) bits to a '1' in the Error Correction Code Control (ECCCTL) register. When disabled, no memory corruption will be detected or corrected.

Note: Both the ECC Encoder and Decoder Disable bits (ENCDIS, DECDIS) must be written to the same value.

When a single bit error is detected in the data word, the SRAM controller calculates the syndrome and automatically corrects the corrupted bit. The LAN8650/1 continues to operate normally and the Single Bit Error Count (SBERCNT) field is incremented in the Error Correction Code Status (ECCSTS) register if the Bit Error Count Enable (BERCNTEN) bit is set. As single bit errors are detected and corrected, the SBERCNT field will increment up to the limit set by the Single Bit Error Limit (SBERLMT) field in the ECCCTL register. Once the SBERCNT reaches the limit, the ECC Error (ECC) and Internal Bus Error (BUSER) status bits will be set in the OPEN Alliance Status 1 (OA_STATUS1) register. If enabled, the setting of these bits will also assert the an interrupt to the host alerting it to the excessive number of single-bit errors encountered.

Note: When the Single Bit Error Count (SBETCNT) field increments to and reaches the Single Bit Error Limit (SBERLMT), an additional single bit error will cause the SBERCNT to roll over to zero. As single bit errors accumulate, the SBERCNT will continue incrementing again up to the limit.

The detection of double bit errors will immediately set the ECC Error (ECC) status bits will be set in the OA_STATUS1 register. The transfer of the corrupted SRAM data word on the internal bus will be prevented avoiding any harmful effects and the Internal Bus Error (BUSER) status bit in the OA_STATUS1 register will also be set. Additionally, if the BERCNTEN bit is set the Double Bit Error Count (DBERCNT) field of the ECCSTS register will be incremented.

Note: When the Double Bit Error Count (DBERCNT) increments to 255, an additional double bit error will cause the DBERCNT to roll over to zero.

The type of fault for the last detected SRAM error is available by reading the Error Status (ERRSTS) field of the ECCSTS register. This field will indicate if the fault was due to a single data bit error, a single parity bit error, or a uncorrectable double bit error. Additionally, when single bit errors are corrected, the computed Error Syndrome (ERRSYN) field indicates on which SRAM bit the failure was detected. The address in which the fault was detected is not available. The Error One Shot (ERONESHT) bit determines if the ERRSTS and ERRSYN fields are updated each time an error is detected (ERONESHT='0') or only on the first error detected (ERONESHT='1'). The ECC Error Status fields may be cleared to their default value at any time by writing a '1' to the Error Clear (ERCLR) bit.

Fault Simulation

The SRAM controller can be forced to inject single and double bit errors to simulate memory corruption. This feature may be useful for the testing of firmware safety mechanisms.

To simulate single bit errors, configure both the FLTINJBIT1 and FLYINJBIT2 fields identically to flip the same SRAM bit. Double bit errors are simulated by setting the FLTINJBIT1 and FLYINJBIT2 fields to flip different bits.

Related Links

11.6.9. ECCCTRL 11.6.10. ECCSTS 11.6.11. ECCFLTCTRL 11.1.7. OA_STATUS1 11.1.10. OA_IMASK1

4.6.2.2 Bus Parity

The LAN8650/1 internally implements a bus that interconnects its major blocks. As an added measure of safety, a single bit even parity check is added that can detect single bit address and data faults in bus transfers. When enabled, a parity bit will be computed such that there is an equal number of ones on each of the address and data buses. Bus parity error detection is disabled by default and is enabled by setting the Parity Generation and Check Enable (PARGCEN) bit in the Bus Parity Control and Status (BUSPCS) register.

When a bus parity error is detected, the bus transaction is aborted (ignored) and the Bus Error (BUSER) status bit in the OPEN Alliance Status 1 (OA_STATUS1) register is set. If enabled, an interrupt will be asserted to the host controller which should then perform a hardware or software reset of the device. The block in which the bus parity error was detected may be read from the parity error status bits in the BUSPCS register as described in the table below.

Table 4-4. Bus Parity Errors

Bit Mnemonic	Bit Name	Description
MBMPER	MAC Buffer Manager Parity Error	Set when the MAC buffer manager detects a bus parity error
SPIPER	SPI Parity Error	Set when the SPI block detects a bus parity error
CSRBPER	Control/Status Register Bridge Parity Error	Set when the control/status register bridge detects a bus parity error
SRAMPER	SRAM Controller Parity Error	Set when the MAC SRAM controller detects a bus parity error

Fault Simulation

As an aid in the testing of application firmware safety mechanisms, bus data parity errors may be forced. When bus parity checking is enabled setting one of the bits in the BUSPCS register will cause the associated parity error to be triggered. See the following table for the various parity errors that can be injected.

Table 4-5. Bus Parity Error Injection

Bit Mnemonic	Bit Name	Description
CSRBDPERI	Control/Status Register Bridge Data Parity Error Injection	Control/status register bridge injects a read data parity error
SRAMDPERI	SRAM Controller Data Parity Error Injection	SRAM controller injects a read data parity error
MBMDPERI	MAC Buffer Manager Data Parity Error Injection	MAC buffer manager injects a data parity error on write access
MBMAPERI	MAC Buffer Manager Address Parity Error Injection	MAC buffer manager injects an address parity error on read/ write access

Related Links

11.6.7. BUSPCS 11.1.7. OA_STATUS1 11.1.10. OA_IMASK1

4.6.3 Configuration Protection

Once the device has been configured, writes to register bit fields by the host controller are typically no longer necessary. However, should the host controller encounter a fault, it is possible that incorrect firmware execution may result in errant writes to critical registers resulting in misconfiguration that could interfere with system-wide communication among other nodes on the bus. For this reason, the LAN8650/1 includes a feature to prevent writes to critical registers once configuration by the host controller is complete.

The Write Enable (WREN) bit in the Configuration Protection Control (CFGPRTCTL) register enables and disables (blocks) writes to all integrated PHY registers in MMS2 (PHY PCS Registers), MMS3 (PHY PMA/PMD Registers), and MMS4 (PHY Vendor Specific Registers) as well as non-PHY registers identified in Table 4-6. Following reset, the Write Enable bit is set indicating that configuration protection is inactive and writing to all register bit fields is enabled. Once the host controller has configured the device, it may write a '0' to the Write Enable bit to activate configuration protection and disable writing to all PHY configuration register bit fields preventing changes to the configuration. When register configuration protection is active, All integrated PHY and non-PHY registers not listed in the table below may be written.

By default, the Configuration Protection Control register is locked and the Write Enable bit cannot be modified. Changing the Write Enable bit requires the Configuration Protection Control register to be unlocked. Unlocking the Configuration Protection Control register requires writing two unique key values in sequence to the Configuration Protection Control register. The host controller must first write a value of 53464352h to the Configuration Protection Control register. Once written, the Key #1 Accepted (KEY1) status bit will be set. The host controller must then write a value of 434F4E46h to the Configuration Protection Control register resulting in the Key #2 Accepted (KEY2) status bit being set. If any value other than 434F4E46h is written after the first key value has been accepted, the LOCKED state is re-entered, the Key #1 Accepted status bit will be cleared and the unlocking process must be restarted. Additionally, writing to any register other than the Configuration Protection Control will also result in the register being locked again with the Key #1 Accepted status bit cleared. When both key values have been written in the correct sequence and accepted as indicated by both the KEY1 Accepted and KEY2 Accepted status bits being set, the Configuration Protection Control register is unlocked and the host controller may then write and modify the Write Enable bit, enabling or disabling writes to all register bit fields. When the Configuration Protection Control register is unlocked, a write to any other register will cause the Configuration Protection Control register to immediately become locked again. See Figure 4-11.

Figure 4-11. Configuration Protection Control Register Lock/Unlock State Diagram

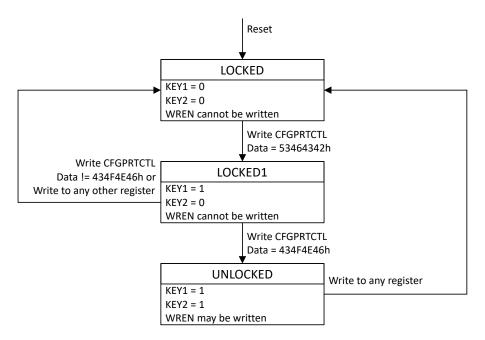


Table 4-6. Protectable non-PHY registers

		J	
MMS	Address	Mnemonic	Name
MMS 0			OPEN Alliance Standard Registers
	0x0003	OA_RESET	OPEN Alliance Configuration 0
	0x0004	OA_CONFIG0	OPEN Alliance Configuration 0
	0x0008	OA_STATUS0	OPEN Alliance Status 0
	0x0009	OA_STATUS1	OPEN Alliance Status 1
	0x000C	OA_IMASK0	OPEN Alliance Interrupt Mask 0
	0x000D	OA_IMASK1	OPEN Alliance Interrupt Mask 1

con	tinued		
MMS	Address	Mnemonic	Name
MMS 1			MAC Registers
	0x0000	MAC_NCR	Network Control Register
	0x0001	MAC_NCFGR	Network Configuration Register
	0x0020	MAC_HRB	Hash Register Bottom
	0x0021	MAC_HRT	Hash Register Top
	0x0022	MAC_SAB1	Specific Address 1 Bottom
	0x0023	MAC_SAT1	Specific Address 1 Top
	0x0024	MAC_SAB2	Specific Address 2 Bottom
	0x0025	MAC_SAT2	Specific Address 2 Top
	0x0026	MAC_SAB3	Specific Address 3 Bottom
	0x0027	MAC_SAT3	Specific Address 3 Top
	0x0028	MAC_SAB4	Specific Address 4 Bottom
	0x0029	MAC_SAT4	Specific Address 4 Top
	0x002A	MAC_TIDM1	MAC Type ID Match 1
	0x002B	MAC_TIDM2	MAC Type ID Match 2
	0x002C	MAC_TIDM3	MAC Type ID Match 3
	0x002D	MAC_TIDM4	MAC Type ID Match 4
	0x0032	SAMB1	Specific Address Match 1 Bottom
	0x0033	SAMT1	Specific Address Match 1 Top
	0x006F	TIUSBN	Timer Increment Sub-Nanoseconds
	0x0070	TSH	Timestamp Seconds High
	0x0074	TSL	Timestamp Seconds Low
	0x0075	TN	Timestamp Nanoseconds
	0x0076	TA	TSU Timer Adjust
	0x0077	TI	TSU Timer Increment
	0x0200	BMGR_CTL	Buffer Manager Control

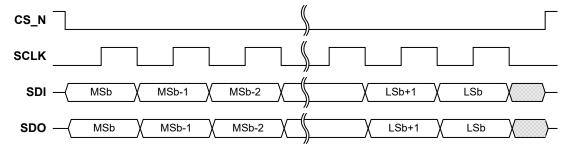
cont	inued		
MMS	Address	Mnemonic	Name
MMS 10			Miscellaneous Registers
	0x0081	QTXCFG	Queue Transmit Configuration
	0x0082	QRXCFG	Queue Receive Configuration
	0x0088	PADCTRL	Pad Control
	0x0089	CLKOCTL	Clock Output Control
	0x0096	BUSPCS	Bus Parity Control/Status
	0x008C	MISC	Miscellaneous
	0x0100	ECCCTRL	SRAM Error Correction Code Control
	0x0101	ECCSTS	SRAM Error Correction Code Status
	0x0102	ECCFLTCTRL	SRAM Error Correction Code Fault Injection Control
	0x0200	EC0CTRL	Event Capture 0 Control
	0x0201	EC1CTRL	Event Capture 1 Control
	0x0202	EC2CTRL	Event Capture 2 Control
	0x0203	EC3CTRL	Event Capture 3 Control
	0x0220	PACTL	Phase Adjuster Control
	0x0221	EG0STNS	Event 0 Start Time Nanoseconds
	0x0222	EG0STSECL	Event 0 Start Time Seconds Low
	0x0223	EG0STSECH	Event 0 Start Time Seconds High
	0x0224	EG0PW	Event 0 Pulse Width
	0x0225	EG0IT	Event 0 Idle Time
	0x0226	EG0CTL	Event 0 Control
	0x0227	EG1STNS	Event 1 Start Time Nanoseconds
	0x0228	EG1STSECL	Event 1 Start Time Seconds Low
	0x0229	EG1STSECH	Event 1 Start Time Seconds High
	0x022A	EG1PW	Event 1 Pulse Width
	0x022B	EG1IT	Event 1 Idle Time
	0x022C	EG1CTL	Event 1 Control
	0x022D	EG2STNS	Event 2 Start Time Nanoseconds
	0x022E	EG2STSECL	Event 2 Start Time Seconds Low
	0x022F	EG2STSECH	Event 2 Start Time Seconds High
	0x0230	EG2PW	Event 2 Pulse Width
	0x0231	EG2IT	Event 2 Idle Time
	0x0232	EG2CTL	Event 2 Control
	0x0233	EG3STNS	Event 3 Start Time Nanoseconds
	0x0234	EG3STSECL	Event 3 Start Time Seconds Low
	0x0235	EG3STSECH	Event 3 Start Time Seconds High
	0x0236	EG3PW	Event 3 Pulse Width
	0x0237	EG3IT	Event 3 Idle Time
	0x0238	EG3CTL	Event 3 Control
	0x0239	PPSCTL	One Pulse-per- Second Control
	0x023A	SEVINTEN	Synchronization Event Interrupt Enable
	0x023B	SEVINTDIS	Synchronization Event Interrupt Disable
	0x023D	SEVSTS	Synchronization Event Status

11.6.8. CFGPRTCTL

5. Serial Peripheral Interface (SPI)

The LAN8650/1 is designed to conform to the OPEN Alliance 10BASE-T1x MAC-PHY Serial Interface specification, Version 1.1. The IEEE Clause 4 MAC integration provides the low pin count standard SPI interface to any microcontroller therefore providing Ethernet functionality without requiring MAC integration within the microcontroller.

The LAN8650/1 operates as an SPI client supporting SCLK clock rates up to a maximum of 25 MHz. This SPI interface supports the transfer of both data (Ethernet frames) and control (register access).


Table 5-1. SPI Pins

Pin Name	Description	Direction
SDI	Serial Data In	Input
SDO	Serial Data Out	Output
CS_N	Chip Select (active low)	Input
SCLK	Serial Clock	Input
IRQ_N	Interrupt Request (active low)	Output

5.1 SPI Format

The LAN8650/1 receives the SPI serial bit clock, SCLK, from the SPI host microcontroller. On the rising edge of SCLK the data is captured, while on the falling edge of SCLK the data will change. The data on SDI and SDO is always transferred most significant bit/byte first.

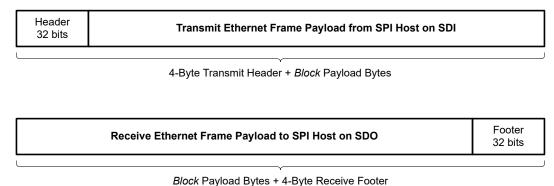
Figure 5-1. SPI Clock Polarity/Phase Mode

There are two types of SPI transactions, each with a different transaction protocol:

- Ethernet MAC Frame data transactions
- Control transactions (access to status and control registers)

The CS_N pin must be asserted (driven low) by the SPI host to begin a transaction on SDI and SDO. The CS_N pin is de-asserted (released) by the SPI host when the transaction completes. CS_N must also be de-asserted between different types of transactions (Ethernet data vs Control). Multiple Ethernet data frames may be transmitted under a single CS_N assertion, but CS_N must be toggled and re-asserted again for every Control transaction.

5.2 MAC Frame Data Transactions


All Ethernet MAC frame data transactions consist of a series of *blocks*. Ethernet MAC frames are transferred over SPI between the MAC-PHY and host by breaking the frames into segments. Each block consists of one or more segments of an Ethernet frame within a data payload plus a 32-bit header/footer. See Figure 5-2. Each SPI transaction will consist of an equal number of transmit and receive data blocks. Not all data within each data block payload is required to all be valid. A transmit data block will be preceded with a 32-bit header indicating which bytes of the following data payload contains valid Ethernet transmit frame data. A receive data block is concluded with a 32-bit footer indicating which bytes of the following data payload contains valid Ethernet receive frame data.

Note: The OPEN Alliance 10BASE-T1x MAC-PHY Serial Interface specification refers to these data transaction blocks as *chunks*.

By default, the block payload data is 64 bytes in size. A smaller block payload data size of 32 bytes is also supported and may be configured in the Block Payload Size (BPS) field of the Configuration 0 (OA_CONFIG0) register. When changing the block payload size, the Buffer Size (BUFSZ) field of the Queue Transmit Configuration (QTXCFG) and Queue Receive Configuration (QRXCFG) registers must also be changed. Changing the block payload size must be performed prior to setting the Configuration Synchronization (SYNC) bit in the OA_CONFIG0 register enabling Ethernet frame transfer.

Figure 5-2. Transmit and Receive Data Block Formats

Typically, transmit Ethernet frames are received by the MAC-PHY from the host without any padding or frame check sequence (FCS). The integrated MAC appends any padding and calculated FCS to the frame before transmitting the packet over the network.

When receiving, the MAC-PHY receives the packets from the network and the integrated MAC validates the received frames with the received FCS. When the MAC validates that a frame was received correctly, it will relay the frame to the host over SPI. If the Remove FCS (RFCS) bit of the MAC Network Configuration Register (MAC_NCFGR) is set, the MAC will strip the FCS from the frames prior to forwarding them to the host. Should the received FCS for a frame fail to validate, the MAC will increment the Frame Check Sequence Error (FCSE) counter in the MAC Statistics 2 (STATS2) register and the frame will be dropped.

Related Links

11.1.5. OA_CONFIG0

11.6.1. QTXCFG

11.6.2. QRXCFG

5.2.1 MAC Frame Transmit Data Block Header

The following table depicts the breakdown of the 32-bit transmit data block header.

Table 5-2. Transmit Data Block Header Format

Bit	31	30	29	28	27	26	25	24
	DNC=1	SEQ	NORX	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
	V	/S	DV	SV		SV	/ O	
Bit	15	14	13	12	11	10	9	8
	0	EV			EE	30		
Bit	7	6	5	4	3	2	1	0
	T:	SC	0	0	0	0	0	Р

Bit 31 - DNC Data, Not Control - Flag indicating the type of transaction, data or control.

0 Control (register read/write)

1 Data (Ethernet frame)

Note: The DNC bit is always set to indicate an Ethernet data transaction.

Bit 30 - SEQ Data Block Sequence - Indication of data block (chunk) sequence (even or odd). This bit is ignored by the LAN8650/1.

Bit 29 - NORX No Receive - The host MCU will set this bit to indicate to the LAN8650/1 that it will ignore any receive Ethernet frame data sent on SDO during this data block.

Bits 23:22 - VS Vendor Specific - This field is reserved for future use. The host MCU shall set these bits to zero.

Bit 21 - DV Data Valid - The host MCU sets this bit to indicate to the LAN8650/1 that valid Ethernet frame data is being transferred within the data block payload.

Start Valid - This bit is set by the host MCU to indicate that the beginning of an Ethernet frame is contained within the data block payload. The beginning of the frame is located by the Start Word Offset (SWO) field. The SV bit is ignored if the Data Valid bit is '0'.

Bits 19:16 - Start Word Offset - This field indicates which 32-bit word of the data block payload contains the first word of a new Ethernet frame. This field is ignored when Data Valid or Start Valid bits are '0'.

Bit 14 - EV End Valid - This bit is set by the host MCU to indicate that the end of an Ethernet frame is contained within the data block payload. The end of the frame is located by the End Byte Offset (EBO) field. The EV bit is ignored if the Data Valid bit is '0'.

Bits 13:8 - EBO End Byte Offset - This field indicated which byte of the data block payload contains the last byte of the end of an Ethernet frame. This field is ignored when Data Valid or End Valid bits are '0'.

Bits 7:6 - TSC Time Stamp Capture - The SPI host may use this field to indicate to the LAN8650/1 to capture the egress timestamp of an Ethernet frame into the specified timestamp capture register.

Note: This field is ignored when frame timestamping is disabled in the Frame Timestamp Enable (FTSE) bit of the Configuration 0 (OA_CONFIGO) register. This field is ignored in all other conditions except when the Data Valid (DV) and Start Valid (SV) bits are both set to '1' to indicate the beginning of a new Ethernet frame transfer.

00 Do not capture frame egress timestamp

01 Capture frame egress timestamp into Transmit Timestamp Capture Register A (TTSCA)

10 Capture frame egress timestamp into Transmit Timestamp Capture Register B (TTSCB)

11 Capture frame egress timestamp into Transmit Timestamp Capture Register C (TTSCC)

Bit 0 - P Parity - Parity bit over bits 31:1 of the transmit data header field. This field is set such that there is an odd total number of bits set within the header.

Related Links

11.1.5. OA_CONFIG0

5.2.2 MAC Frame Receive Data Block Footer

The following table depicts the breakdown of the 32-bit receive data block footer.

Table 5-3. Receive Data Block Footer Format

Bit	31	30	29	28	27	26	25	24
	EXST	HDRB	SYNC			RBA		
Bit	23	22	21	20	19	18	17	16
	V	'S	DV	SV		SW	/ 0	
Bit	15	14	13	12	11	10	9	8
	FD	EV			E	30		
Bit	7	6	5	4	3	2	1	0
	RTSA	RTSP			TXC			Р

Extended Status - The LAN8650/1 sets this bit any time a status bit is set pending (and unmasked) within the Status 0 (OA_STATUS0) or Status 1 (OA_STATUS 1) registers.

Bit 30 - HDRB Header Bad - Indication that the LAN8650/1 received a transaction header with an invalid parity.

Bit 29 - SYNC

Configuration Synchronized - This bit reflects the state of the Configuration Synchronization (SYNC) bit in the Configuration 0 (OA_CONFIG0) register. A zero indicates that the LAN8650/1 configuration may be unsynchronized with the SPI host. Following configuration, the SPI host shall set the SYNC bit within the OA_CONFIG0 register to enable the transfer of Ethernet frame data.

Bits 28:24 - RBA Receive Blocks Available - This field reflects the minimum number of blocks of buffered frame data received from the network that is available for the MCU host to read from the LAN8650/1.

Bits 23:22 - VS Vendor Specific - This field is reserved for future use. The LAN8650/1 will always set these bits to zero.

Bit 21 - DV Data Valid - TheLAN8650/1 sets this bit to indicate to the SPI host that valid Ethernet frame data is being transferred within the data block payload.

Bit 20 - SV

Start Valid - This bit is set by the LAN8650/1 to indicate that the beginning of an Ethernet frame is contained within the data block payload. The beginning of the frame is located by the Start Word Offset

contained within the data block payload. The beginning of the frame is located by the Start Word Offset (SWO) field. The SV bit is ignored if the Data Valid bit is '0'.

SWOStart Word Offset - This field indicates which 32-bit word of the data block payload contains the first word of a new Ethernet frame.

Bit 15 - FD Frame Drop - This bit is set when the LAN8650/1 has detected an error in the received Ethernet frame indicating to the host MCU that the current frame received from SPI should be dropped. This bit is only valid when End Valid (EV) is set indicating the end of an Ethernet frame.

Bit 14 - EV End Valid - This bit is set by the LAN8650/1 to indicate that the end of an Ethernet frame is contained within the data block payload. The end of the frame is located by the End Byte Offset (EBO) field. The EV bit is ignored if the Data Valid bit is '0'.

Bits 13:8 - EBO End Byte Offset - This field indicated which byte of the data block payload contains the last byte of the end of an Ethernet frame. This field is ignored when Data Valid or End Valid bits are '0'.

Bit 7 - RTSA Receive Timestamp Added - When set, this bit indicates that the LAN8650/1 has captured a frame ingress timestamp and added it to the beginning of the frame in the data block payload.

Bit 6 - RTSP

Receive Timestamp Parity - When an ingress frame timestamp has been captured and added to the beginning of a new frame in the data block payload as indicated by the Receive Timestamp Added (RTSA) bit being set, this bit contains the odd parity bit calculated over the timestamp.

Bits 5:1 - TXC Transmit Credits - This field is used to indicate to the SPI host the number of transmit data blocks which may be sent to the LAN8650/1 without causing a buffer overflow.

Bit 0 - P Parity - Parity bit over bits 31:1 of the receive data footer field. This field is set such that there is an odd total number of bits set within the footer.

Related Links

11.1.5. OA_CONFIG0 11.1.6. OA_STATUS0 11.1.7. OA STATUS1

5.2.3 MAC Frame Data Integrity

While the MAC and Frame Check Sequence (FCS) safeguards Ethernet packets against bit errors over the network, it assumes an error free SPI connection between the MAC-PHY and host. However, there always exists a very small probability that the Ethernet frames between the MAC-PHY may incur bit errors over SPI. This is especially true for applications in high electromagnetic environments that could couple noise into the application. Normally these SPI bit errors cannot be detected at the Ethernet frame level and data integrity is therefore guaranteed by higher protocol layers.

For high safety or electromagnetic sensitive applications, the MAC-PHY may be configured to guarantee error-free communication over SPI at cost of increased processing by the host. The MAC-PHY is configured to protect SPI communication by setting the following bits:

- Write a '1' to the Transmit Frame Check Sequence Validation (TXFCSVE) bit of the OPEN Alliance Configuration 0 (OA_CONFIGO) register. Setting this bit causes the MAC-PHY to validate transmit frames with the FCS computed and appended by the host.
- Write a '1' to the MAC Frame Check Sequence Disable (MACFCSDIS) bit of the Queue Transmit Configuration (QTXCFG) register. Setting this bit disables the calculation and appending of FCS for frames from the host.
- Write a '0' to the Remove FCS (RFCS) bit of the MAC Network Configuration Register (MAC_NCFGR). note: This bit is 0 by default, preventing the MAC from stripping the FCS from frames received from the network when relaying them to the host via SPI.

For transmit frames, the host must pad the frame by appending dummy bytes to the frame payload such that the frame will be at least 60 bytes (64 bytes in length once the frame check sequence is appended). The host must then compute the 32-bit FCS for the frame and append it to the frame. The host may then transmit the frame to the MAC-PHY over SPI. When the MAC-PHY receives the frame from the host, it will validate the FCS of the frame computed and appended by the host. If the FCS fails to validate, the MAC-PHY will drop the packet and set the Transmit Frame Check Sequence Error (TXFCSE) bit in the OPEN Alliance Status 0 (OA STATUS0) register.

The integrated MAC still validates frames received from the network for a valid FCS and drops the frame when an error is detected. If the frame passes the FCS validation, the MAC-PHY will relay the frame to the host via SPI without stripping the FCS. The host may then perform its own validation of the FCS to guarantee no bit errors were introduced by the SPI.

Related Links

11.1.5. OA_CONFIG0 11.1.6. OA_STATUS0 11.2.2. MAC_NCFGR 11.2.28. STATS2 11.6.1. QTXCFG

5.2.4 Store-and-Forward versus Cut-Through

The MAC-PHY can transfer Ethernet frames using two methods. By default, the MAC-PHY operates in a store-and-forward method. In this method the MAC-PHY receives the full Ethernet frame, from either the network or the host controller via SPI, and only thereafter forwards it to the destination, the host controller via SPI or the network. Store-and-forward is the most robust transfer method, however it incurs the most latency, especially with large frames, as the frame must be fully received by the MAC-PHY before it can be forwarded.

The second method of transfer is cut-through mode. In cut-through mode, the MAC-PHY does not need to receive the full packet before forwarding it on. Once a threshold of data has been received by the MAC-PHY, either from the network or the host controller via SPI, the MAC-PHY may begin to immediately forward the packet on to the host controller or the network much earlier than in store-and-forward mode.

Cut-through mode can significantly reduce latency in some situations. For packets received from the network, the latency can almost always be reduced when forwarding them to the host controller over SPI. However, in the transmit direction, packets received by the MAC-PHY from the host controller over SPI may need to wait for other devices to finish transmitting and will often need to wait for the local PLCA transmit opportunity to occur before the MAC-PHY can begin to forward the packet onto the network.

5.2.4.1 Receive Cut-Through

By default, the MAC-PHY will receive packets and send them to the host controller in store-and-forward mode. Receive cut-through operation is enabled by setting the Receive Cut-Through Enable (RXCTE) bit in the OPEN Alliance Configuration 0 (OA_CONFIG0) register.

When receive cut-through is enabled, the MAC-PHY will begin to send receive packet data to the host controller once it has received enough data from the network to fill a data block. The SPI host cannot read packet data from the MAC-PHY fast enough to overrun the MAC-PHY receive packet buffer. If the MAC-PHY does not have a full block of data to send to the host over SPI (and the end of the frame has not been received), the MAC-PHY will simply respond with a receive data block containing no data, Data Valid will be '0' in the block's receive data footer.

In store-and-forward operation, packets received from the network are checked for validity before being forwarded to the host controller. For example, packets with an incorrect frame check are normally not forwarded to the host controller. When operating in cut-through mode, the packet is already partially received by the host controller before the MAC can identify receive errors. As it would be a burden on the host controller to verify the receive packet integrity, when the MAC detects an invalid receive packet it will signal to the host controller that the packet should be ignored. Packets that should be ignored by the host are identified by the Frame Drop bit being set in the receive data footer in the final block of the packet when End Valid is also set.

Receive cut-through operation must be configured and enabled prior to the setting of the Configuration Synchronization (SYNC) bit in the OA_CONFIGO register.

Related Links

11.1.5. OA_CONFIG0

5.2.4.2 Transmit Cut-Through

The MAC-PHY accepts packets from the host controller and transmits them to the network in store-and-forward mode by default. To enable transmit cut-through operation, set the Transmit Cut-Through Enable (TXCTE) bit in the OPEN Alliance Configuration 0 (OA_CONFIG0) register.

When transmit cut-through is enabled, special care must be taken not to allow the MAC-PHY transmit buffer to underflow. Once the host controller begins to send an Ethernet frame, the MAC-PHY may begin transmitting the frame onto the network as soon as a threshold of data has arrived. At this point the host controller must continue to send the remainder of the Ethernet frame over SPI faster than the MAC-PHY is transmitting the frame to the network. If the host controller fails to keep up with the rate at which the frame is transmitted to the network a MAC-PHY transmit buffer underflow condition occurs. When this condition occurs, the MAC-PHY will terminate transmitting the frame and set the Transmit Buffer Underflow Error (TXBUE) bit in the OPEN Alliance Status 0 (OA_STATUSO) register. The remainder of the Ethernet packet from the host controller will be ignored by the MAC-PHY and the packet will be dropped. The Ethernet frame will not be delivered to its destination and must be retransmitted by the host controller.

The risk of under-running the MAC-PHY transmit buffer and dropping frames may be reduced by increasing the threshold of Ethernet data the MAC-PHY must receive from the host controller before it begins to transmit. By default, the threshold of Ethernet packet data the MAC-PHY must receive from the SPI host before it begins transmitting is two blocks. This threshold may be increased by writing to the Cut-Through Threshold (CTTHR) field of the Queue Transmit Configuration (QTXCFG) register prior to enabling cut-through operation.

Note: Increasing the transmit Cut-Through Threshold will also increase transmit latency.

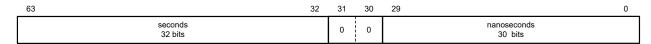
The cut-through latency improvement over store-and-forward is limited as the MAC-PHY may still need to wait for other devices on the network to complete transmitting on the shared media.

Transmit cut-through operation must be configured and enabled prior to the setting of the Configuration Synchronization (SYNC) bit in the OA_CONFIGO register.

Related Links

11.1.5. OA_CONFIG0 11.1.6. OA_STATUS0 11.6.1. QTXCFG

5.2.5 Ethernet Frame Timestamping


The LAN8650/1 supports timestamping on egress (transmit) or ingress (receive) of Ethernet frames via the MDI. The Frame Timestamp Capability (FTSC) bit in the Standard Capabilities (OA_STDCAP) register indicates that the LAN8650/1 supports frame timestamping. Frame timestamping is enabled by setting the Frame Timestamp Enable (FTSE) bit within the Configuration 0 (OA_CONFIG0) register.

Both 32-bit and 64-bit timestamp formats are supported, as shown in Figure 5-3 and Figure 5-4. Each timestamp format contains a 30-bit nanoseconds field which rolls over each second to zero at 0x3B9ACA00. The seconds field is incremented by one each time the nanoseconds field rolls over. The 32-bit timestamp contains a 2-bit seconds field allowing for a range of 4 seconds. The 64-bit timestamp includes a larger 32-bit seconds field.

Figure 5-3. 32-bit Timestamp Format

Figure 5-4. 64-bit Timestamp Format

The time stamp is captured by the MAC Time Stamp Unit; time stamps will be captured at the end of the Start-of-Frame delimiter for both inbound and outbound frames.

Related Links

4.5.1. Wall Clock 11.1.3. OA_STDCAP 11.1.5. OA CONFIG0

5.2.5.1 Timestamping - Frame Egress

Transmit timestamping is enabled by setting the Frame Timestamp Enable (FTSE) bit in the Configuration 0 (OA_CONFIGO) register. The SPI host will indicate to the LAN8650/1 that a transmit (egress) timestamp should be captured for a specific frame by writing the Timestamp Capture (TSC) field of the transmit data header. The TSC field is only valid in the corresponding data header of the transmit data block payload containing the beginning of a new frame, i.e., Start Valid (SV) is set to '1'. A non-zero TSC field indicates which of three Transmit Timestamp Capture High/Low registers (TTSCAH/L, TTSCBH/L, TTSCCH/L) the captured egress timestamp value for the frame will be placed. When the frame is transmitted, the LAN8650/1 will capture the current timestamp, place the timestamp into the desired Transmit Timestamp Capture register pair, and set the appropriate Transmit Timestamp Capture Available (TTSCAA, TTSCAB, TTSCAC) status bit in the Status 0 (OA STATUSO) register. If enabled, the IRQ N pin will also be asserted.

When the TSC header field is zero (or frame timestamping is disabled), no frame egress timestamp will be captured.

Related Links

11.1.5. OA_CONFIGO 11.1.6. OA_STATUSO 11.1.11. TTSCAH 11.1.12. TTSCAL 11.1.13. TTSCBH 11.1.14. TTSCBL 11.1.15. TTSCCH 11.1.16. TTSCCL

5.2.1. MAC Frame Transmit Data Block Header

5.2.5.2 Timestamping - Frame Ingress

If the Frame Timestamp Enable (FTSE) bit in the Configuration 0 (OA_CONFIG0) is set, then the LAN8650/1 will capture the current timestamp for each ingress frame received from the network. When the SPI host reads the received frame from the LAN8650/1, the LAN8650/1 will add the captured timestamp to the beginning of the frame within the data block payload. The SPI receive footer for the corresponding data block containing the added timestamp will have the footer Receive Timestamp Added (RTSA) bit set along with the Start Valid (SV) bit. The Start Word Offset (SWO) field of the footer will contain the word offset within the receive data block payload containing the first word of the added timestamp. The beginning of the received frame will immediately follow the added timestamp in the receive data block payload. The size of the timestamp will be either one or two 32-bit words as configured by the Frame Timestamp Select (FTSS) bit in the Configuration 0 (OA_CONFIG0) register. Depending on the location of the timestamp within the receive data block payload, the beginning of the new frame may begin in the following receive data block. Likewise, the lower 32-bit word of a 64-bit timestamp may appear in the following receive data block.

When the RTSA bit is set, the Receive Timestamp Parity (RTSP) will contain the odd parity check calculated over the added timestamp.

When frame timestamping is disabled (FTSE is '0') or the footer does not indicate the beginning of a new frame (SV is '0'), then the footer RTSA and RTSP bits will always be '0'.

Related Links

11.1.5. OA CONFIGO

5.2.2. MAC Frame Receive Data Block Footer

5.3 Control Transactions

5.3.1 Control Command Header

All control and status register data reads/writes are performed with Control Transactions. All Control transactions, regardless of read or write, are preceded by a 32-bit Control Command Header as shown in the following table:

Table 5-4. Control Command Header Format

Bit	31	30	29	28	27	26	25	24
	DNC=0	HDRB	WNR	AID		MN	ΛS	
Bit	23	22	21	20	19	18	17	16
				ADDR	[15:8]			
Bit	15	14	13	12	11	10	9	8
				ADDF	R[7:0]			
Bit	7	6	5	4	3	2	1	0
				LEN				Р

Bit 31 - DNC Data, Not Control - Flag indicating the type of transaction, data or control.

0 Control (register read/write)

1 Data (Ethernet frame)

Note: The DNC bit is always zero to indicate a control command and distinguish it from a frame data block header.

Bit 30 - HDRB Header Bad - Indication from the LAN8650/1 to the SPI host that the MAC-PHY received a transaction header with an invalid parity. When sent to the LAN8650/1 by the SPI host, the value of this bit is ignored by the

Bit 29 - WNR Write, Not Read - This bit indicates the type of control access to perform.

- 0 Control/Status register read
- 1 Control/Status register write
- **Address Increment Disable** Normally, when this bit is 0, the address is post-incremented by one following each read/write register access within the same control command. When this bit is 1, subsequent reads or writes within the same control command will result in the same register address being accessed. This feature is useful for reading and writing register FIFOs located at a single address.
 - Register address will automatically be post-incremented following each read/write within the same control command.
 - 1 Register address will not be post-incremented following each read/write within the same control command, allowing successive access to the same register address.
- **Bits 27:24 Memory Map Selector** This bit field selects the LAN8650/1 memory map to be accessed MMS
- **Bits 23:8 - Address -** This field specifies the address of the first register to access within the selected memory map. ADDR
- **Bits 7:1 LEN Length** This field specifies the number of successive registers to read/write within the control command. The length is the number of registers to access minus one. Up to 128 consecutive registers may be read or written by a single control command. When accessing only a single register, this field is zero.
- Bit 0 P Parity Parity bit over bits 31:1 of the control command header field. This field is set such that there is an odd total number of bits set within the header.

Note: The parity bit will be updated by the LAN8650/1 if it is echoed back to the SPI host with the Header Bad (HDRB) bit set.

5.3.2 Control Read/Write Format

Before performing a Control Read or Control Write, the SPI host will assert the CS_N low before initiating the Control Command transaction to the LAN8650/1. The Control Read/Write Command is used to perform both individual consecutive register reads/writes. For both read and write, the Control Header sent to the LAN8650/1 over SDI is always echoed back to the SPI host over SDO. When performing control writes, the register data sent over SDI is also echoed back over SDO.

All register data is transmitted as 32-bit words, most significant byte and bit first. Any register data that is less than 32-bits will be right aligned within the word and preceded with zeros.

Register reads or writes can be unprotected (default) or protected when the Protection Enable (PROTE) bit is set in the OA_CONFIGO register. A protected read or write is the original word of data immediately followed with a duplicate word containing the ones' complement of the original data. The receiver of the data then performs an exclusive-OR (XOR) of the data and the ones' complement to determine if any ones are detected indicating a transmission error. If an error was detected, the LAN8650/1 will not write the incorrect data; additionally, the LAN8650/1 will not attempt to correct any write data over SDO when echoing the data.

The following figures illustrate Control Reads, Control Writes, and register data format in both protected and unprotected modes.

Figure 5-5. Control Register Write

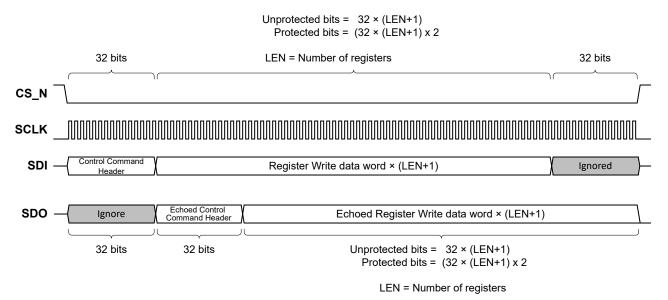


Figure 5-6. Control Register Read

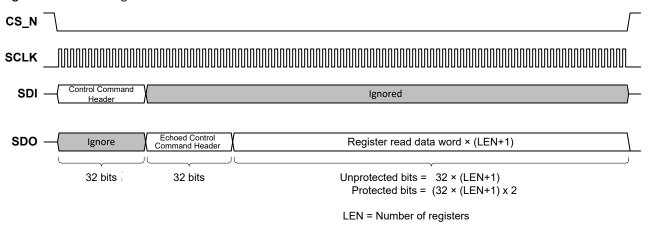
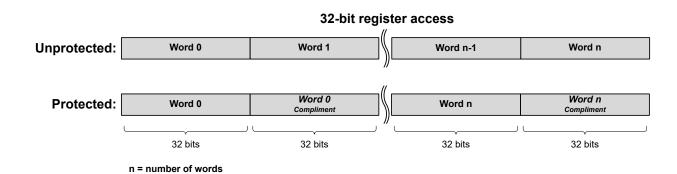



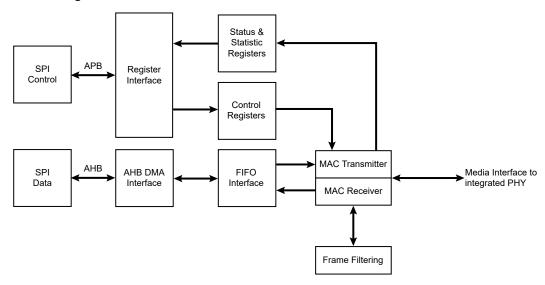
Figure 5-7. Control Register Data Formats - Protected and Unprotected

n = number of words

16-bit register access **Unprotected:** x0000 Word 0 x0000 Word 1 x0000 Word n-1 x0000 Word n Word 0 Word n Protected: x0000 Word 0 XFFEE x0000 Word n XFFEE Compliment 32 bits 32 bits 32 bits 32 bits

6. Ethernet MAC

6.1 Description


The Ethernet Media Access Controller (MAC) module implements a 10 Mbps half duplex Ethernet MAC, compatible with the IEEE 802.3 standard.

6.2 Embedded Characteristics

- Compatible with IEEE Standard 802.3
- 10 Mbps half duplex operation
- Statistics Counter Registers
- Internal MII interface to the integrated physical layer
- Interrupt generation to signal errors or other events
- Automatic pad and cyclic redundancy check (CRC) generation on transmitted frames
- · Automatic discard of frames received with errors
- Address checking logic for four specific 48-bit addresses, four type IDs, promiscuous mode, hash matching of unicast and multicast destination addresses
- Support for 802.1Q VLAN tagging with recognition of incoming VLAN and priority tagged frames
- Time stamp unit (TSU)

6.3 Block Diagram

Figure 6-1. Block Diagram

6.4 Functional Description

6.4.1 Media Access Controller

The Transmit Block of the Media Access Controller (MAC) takes data from FIFO, adds preamble, checks and adds padding and frame check sequence (FCS). Only 10Mbps half duplex Ethernet mode of operation is supported.

Operating in half duplex mode, the MAC Transmit Block generates data according to the Carrier Sense Multiple Access with Collision Detect (CSMA/CD) protocol. The start of transmission is deferred if Carrier Sense (CRS) is active. If Collision (COL) is detected during transmission, a jam sequence is asserted and the transmission is retried after a random back off.

The Receive Block of the MAC checks for valid preamble, Frame Check Sequence (FCS), alignment/length, and presents received frames to the MAC address checking block and FIFO. It can optionally strip FCS bytes from the received frame before transferring it to FIFO.

The Address Checker recognizes four specific 48-bit addresses, can recognize four different types of ID values, and contains a 64-bit Hash register for matching multicast and unicast addresses as required. It can recognize the broadcast address *all-'1'* (0xFFFFFFFFFFF) and copy all frames (promiscuous mode). The MAC can also reject all frames that are not VLAN tagged.

6.4.2 MAC Transmit Block

The MAC transmitter operates in half duplex mode and transmits frames in accordance with the Ethernet IEEE 802.3 standard. In half duplex mode, the CSMA/CD protocol of the IEEE 802.3 specification is followed.

A small input buffer receives data through the FIFO interface which will extract data in 32-bit form. All subsequent processing prior to the final output is performed in bytes.

Transmit data is output to the integrated 10BASE-T1S PHY using the internal MII interface.

Frame assembly starts by adding the preamble and the start frame delimiter. Data is taken from the transmit FIFO interface a word at a time.

If necessary, padding is added to take the frame length to 60 bytes. A 32-bit CRC is calculated, inverted, and appended to the end of the frame taking the frame length to a minimum of 64 bytes.

In half duplex mode, the transmitter checks carrier sense. If asserted, the transmitter waits for the signal to become inactive and then begins transmission after the interframe gap of 96 bit times. If the collision signal is asserted during transmission, the transmitter will transmit a jam sequence of 32 bits taken from the data register and then retry transmission after the back off time has elapsed. If the collision occurs during either the preamble or Start Frame Delimiter (SFD), then these fields will be completed prior to generation of the jam sequence.

The back off time is based on a pseudo random binary sequence (PRBS) generator seeded from the least significant 32 bits of the MAC address as configured in the Specific Address Bottom 1 (MAC_SAB1) register. The number of bits of the PRBS output used depends on the number of collisions seen. After the first collision 1 bit is used, then the second 2 bits and so on up to the maximum of 10 bits. All 10 bits are used above ten collisions. An error will be indicated and no further attempts will be made if 16 consecutive attempts cause collision. This operation is compliant with the description in Clause 4.2.3.2.5 of the IEEE 802.3 standard which refers to the truncated binary exponential back off algorithm. Collision back off and retry will be performed up to 16 times.

Note: The Specific Address Bottom 1 register should be uniquely configured for proper CSMA/CD operation. When operating in CSMA/CD mode with PLCA disabled, two nodes may collide and retry at the exact same time if the Specific Address Bottom 1 register is not configured or configured identically. This may result in frames being dropped due to excessive collisions.

6.4.3 MAC Receive Block

All processing within the MAC receive block is implemented using a 16-bit data path. The MAC receive block checks for valid preamble, FCS, alignment and length, presents received frames to the FIFO interface and stores the frame destination address for use by the address checking block.

If, during the frame reception, the frame is found to be too long, a bad frame indication is sent to the FIFO interface. The receiver logic ceases to send data to memory as soon as this condition occurs.

At end of frame reception the receive block indicates to the DMA block whether the frame is good or bad. The DMA block will recover the current receive buffer if the frame was bad and the frame will not be forwarded to the SPI.

Ethernet frames are normally stored in DMA memory complete with the FCS. Setting the Remove FCS (RFCS) bit in the Network Configuration register causes frames to be stored without their corresponding FCS bytes. The reported frame length field is reduced by four bytes to reflect this operation.

The receive block signals to the statistics register block to increment the alignment, Frame Check Sequence Errors (FCSE), Undersize Frames Received (UFRX), Oversize Frames Received (OFRX), or Receive Symbol Errors (RXSE) when any of these exception conditions occur. A count of jabber errors received may be found within the integrated PHY status registers.

If the Ignore RX FCS (IRXFCS) bit is set in the Network Configuration register, CRC errors will be ignored and CRC errored frames will not be discarded, though the Frame Check Sequence Errors statistic register will still be incremented. This is useful for applications where individual frames with FCS errors must be identified.

Received frames can be checked for length field errors by setting the Length Field Error Frame Discard (LFERD) bit of the Network Configuration register. When this bit is set, the receiver compares a frame's measured length with the length field (bytes 13 and 14) extracted from the frame. The frame is discarded if the measured length is shorter. This checking procedure is for received frames between 64 bytes and 1518 bytes in length.

Each discarded frame is counted in the 8-bit Length Field Error (LFER) field of the statistics register. Frames where the length field is greater than or equal to 1536 will not be checked.

Related Links

11.2.2. MAC_NCFGR

6.4.4 MAC Filtering Block

The filter block determines which frames should be written to the FIFO interface and on to the SPI.

Whether a frame is passed to the SPI depends on what is enabled in the Network Configuration register, the contents of the specific address, type and Hash registers, and the frame's destination address and type field.

If the EFRHD bit of the Network Configuration register is not set, a frame will not be copied to memory if the MAC is transmitting in half duplex mode at the time a destination address is received.

The MAC supports recognition of four specific addresses. Each specific address requires two registers, Specific Address Bottom (MAC_SABn) and Specific Address Top (MAC_SATn). The Specific Address Bottom register stores the first four bytes of the destination address and Specific Address Top contains the last two bytes. The addresses stored can be specific, group, local, or universal.

The destination address of received frames is compared against the data stored in the Specific Address registers once they have been activated. The addresses are deactivated at reset or when their corresponding Specific Address register Bottom is written. They are activated when Specific Address register Top is written. If a receive frame address matches an active address, the frame is written to the FIFO interface and on to the SPI.

Frames may be filtered using the type ID field for matching. Four type ID registers (MAC_TIDMn) exist in the register address space and each can be enabled for matching by writing a one to the MSB (bit 31) of the respective register. When a frame is received, the matching is implemented as an OR function of the various types of match.

The contents of each type ID register (when enabled) are compared against the length/type ID of the frame being received (e.g., bytes 13 and 14 in non-VLAN and non-SNAP encapsulated frames) and copied to memory if a match is found.

The reset state of the type ID registers is zero, hence each is initially disabled.

The following example illustrates the use of the address and type ID match registers for a MAC destination address of 21:43:65:87:A9:CB:

Table 6-1. Example Ethernet Frame Beginning

Preamble	55
SFD	D5
DA (Octet 0 - LSB)	21
DA (Octet 1)	43
DA (Octet 2)	65
DA (Octet 3)	87
DA (Octet 4)	A9
DA (Octet 5 - MSB)	СВ
SA (LSB)	00 (see Note)
SA	00 (see Note)
SA (MSB)	00 (see Note)
Type ID (MSB)	43
Type ID (LSB)	21

The sequence in Table 6-1 shows the beginning of an Ethernet frame. Byte order of transmission is from top to bottom, as shown. For a successful match to specific address 1, the following address matching registers must be set up:

Specific Address 1 Bottom register (MAC_SAB1) = 0x87654321

Specific Address 1 Top register (MAC SAT1) = 0x0000CBA9

For a successful match to the type ID, the following Type ID Match 1 register must be set up:

Type ID Match 1 register (MAC_TIDM1) = 0x80004321

Related Links

11.2.2. MAC NCFGR

11.2.5. MAC_SAB1

11.2.6. MAC_SAT1

11.2.13. MAC_TIDM1

6.4.5 Broadcast Address

Related Links

11.2.2. MAC_NCFGR

6.4.6 Hash Addressing

The hash address register is 64 bits long and takes up two locations in the memory map. The least significant bits are stored in Hash Register Bottom (MAC_HRB) and the most significant bits in Hash Register Top (MAC_HRT).

The Unicast Hash Enable (UNIHEN) and the Multicast Hash Enable (MTIHEN) bits in the Network Configuration register enable the reception of hash matched frames. The destination address is reduced to a 6-bit index into the 64-bit Hash register using the following hash function: The hash function is an exclusive OR (XOR) of every sixth bit of the destination address.

```
hash_index[05] = da[05] ^ da[11] ^ da[17] ^ da[23] ^ da[29] ^ da[35] ^ da[41] ^ da[47] hash_index[04] = da[04] ^ da[10] ^ da[16] ^ da[22] ^ da[28] ^ da[34] ^ da[40] ^ da[46] hash_index[03] = da[03] ^ da[09] ^ da[15] ^ da[21] ^ da[27] ^ da[33] ^ da[39] ^ da[45] hash_index[02] = da[02] ^ da[08] ^ da[14] ^ da[20] ^ da[26] ^ da[32] ^ da[38] ^ da[44] hash_index[01] = da[01] ^ da[07] ^ da[13] ^ da[19] ^ da[25] ^ da[31] ^ da[37] ^ da[43] hash_index[00] = da[00] ^ da[06] ^ da[12] ^ da[18] ^ da[24] ^ da[30] ^ da[36] ^ da[42]
```

da [0] represents the least significant bit of the first byte received, that is, the multicast/unicast indicator, and da [47] represents the most significant bit of the last byte received.

If the hash index points to a bit that is set in the Hash register then the frame will be matched according to whether the frame is multicast or unicast.

A multicast match will be signaled if the multicast hash enable bit is set, da [0] is logic 1 and the hash index points to a bit set in the Hash register.

A unicast match will be signaled if the unicast hash enable bit is set, da [0] is logic 0 and the hash index points to a bit set in the Hash register.

To receive all multicast frames, the Hash register should be set with all ones and the Multicast Hash Enable bit should be set in the Network Configuration register.

Related Links

11.2.3. MAC HRB

11.2.4. MAC_HRT

11.2.2. MAC_NCFGR

6.4.7 Copy all Frames (Promiscuous Mode)

If the Copy All Frames (CAF) bit is set in the Network Configuration register then all frames (except those that are too long, too short, have FCS errors, or have RXER asserted by the PHY during reception) will be copied to memory. Frames with FCS errors will be copied if the Ignore RX FCS (IRXFCS) bit is set in the Network Configuration register.

Related Links

11.2.2. MAC NCFGR

6.4.8 VLAN Support

The following table describes an Ethernet encoded 802.1Q VLAN tag.

Table 6-2. 802.1Q VLAN Tag

TPID (Tag Protocol Identifier) 16 bits	TCI (Tag Control Information) 16 bits
0x8100	First 3 bits priority, then CFI bit, last 12 bits VID

The VLAN tag is inserted at the 13th byte of the frame adding an extra four bytes to the frame. To support these extra four bytes, the MAC can accept frame lengths up to 1536 bytes by setting the 1536 Maximum Frame Size (MAXFS) bit in the Network Configuration register.

The MAC can be configured to reject all frames except VLAN tagged frames by setting the discard Non-VLAN Frames (DNVLAN) bit in the Network Configuration register.

11.2.2. MAC NCFGR

6.4.9 Wall Clock

The wall clock is used for timestamps for inbound and outbound packets in the MAC and in the event capture unit, as well as for the time references used in the event generator. It is implemented as part of the MAC, so it can be configured and adjusted via accesses in MMS1.

The wall clock is implemented as a timer which increments each tick of the reference clock. The timer contains 94 bits where:

- The 48 upper bits [93:46] represent seconds
- The 30 lower bits [45:16] represent nanoseconds. This field resets to 0 at the end of each second.
- The lowest 16 bits [15:0] of the timer count sub-nanoseconds. This field resets to 0 at the end of each nanosecond.

Event capture and event generation use all 48 seconds bits and all 30 nanoseconds bits. Packet time stamps accessed using the built-in features of the SPI protocol will use the least significant seconds bits, as shown in the Ethernet Frame Timestamping Section.

To set the wallclock,

- Set the upper 16 bits of the wall clock seconds in the TSU Timer Seconds High (MAC_TSH) register
- Set the lower 32 bits of the wall clock seconds in the TSU Timer Seconds Low (MAC_TSL) register.
- Set the wall clock nanoseconds in the TSU Timer Nanoseconds (MAC_TN) register.
- The wall clock sub-nanosecond portion is not set or read directly.

In addition to setting the clock time, it is also necessary to set the amount of time the clock increments on each tick of the reference clock. The nanosecond portion of the increment is set in the TSU Timer Increment (MAC_TI) register, while the sub-nanosecond portion is set using the TSU Timer Increment Sub-Nanoseconds (MAC_TISUBN) register. The LAN8650/1 uses a 25.0 MHz timer clock source and requires that the timer increment by 40.0 ns for each clock period. This is programmed by writing the value 0x00000028 to the TSU Timer Increment (MAC_TI) register. The sub-nanosecond register is not needed on initial configuration, but can be used when synchronizing the wall clock to an external clock source.

Related Links

5.2.5. Ethernet Frame Timestamping

11.2.20. MAC TSH

11.2.21. MAC TSL

11.2.22. MAC TN

11.2.24. MAC_TI

11.2.19. MAC TISUBN

6.4.10 PHY Interface

The Ethernet MAC incorporates an internal MII to the integrated 10BASE-T1S PHY.

6.5 Programming Interface

6.5.1 Initialization

6.5.1.1 Configuration

Initialization of the MAC configuration (e.g., loop back mode) must be done while the transmit and receive circuits are disabled. See the description of the Network Control register and Network Configuration register earlier in this document.

To change loop back mode, the following sequence of operations must be followed:

- 1. Write to Network Control register to disable transmit and receive circuits.
- 2. Write to Network Control register to change loop back mode.
- 3. Write to Network Control register to re-enable transmit or receive circuits.

 Note: These writes to the Network Control register cannot be combined in any way.

6.5.1.2 Address Matching

The MAC Hash register pair and the four Specific Address register pairs must be written with the required values. Each register pair comprises of a bottom register and top register, with the bottom register being written first. The address matching is disabled for a particular register pair after the bottom register has been written and re-enabled when the top register is written. Each register pair may be written at any time, regardless of whether the receive circuits are enabled or disabled.

As an example, to set Specific Address register 1 to recognize destination address 21:43:65:87:A9:CB, the following values are written to Specific Address register 1 bottom and Specific Address register 1 top:

- Specific Address register 1 bottom bits 31:0 (MMS1, address 0x0022): 0x8765_4321.
- Specific Address register 1 top bits 31:0 (MMS1, address 0x0023): 0x0000_CBA9.

6.5.1.3 PHY Maintenance

The internal PHY control and status registers are accessed directly using SPI command reads and writes to various Memory Map Selectors (MMS).

Related Links

5.3. Control Transactions

11. Register Descriptions

6.5.1.4 Transmitting Frames

Frames may be written by the SPI host and transmitted if the Configuration Synchronization (SYNC) bit in the OA_CONFIGO register is set and the MAC transmit circuits are enabled.

- 1. Enable transmit in the Network Control register.
- 2. Set the Configuration Synchronization (SYNC) bit in the OA_CONFIGO register.
- 3. The SPI host transfers the transmit frame from the host to the MAC via the SPI.
- 4. The MAC transmits the frame to the internal PHY as specified by the CSMA/CD algorithm.

6.5.1.5 Receiving Frames

Network frames are ignored when the Configuration Synchronization (SYNC) bit in the OA_CONFIG0 register is '0'.

- Enable receive in the Network Control register.
- Set the Configuration Synchronization (SYNC) bit in the OA_CONFIGO register.

When a frame is received, the SYNC bit is set, and the MAC receive circuits are enabled, the MAC checks the address and, in the following cases, the frame is written to internal memory buffers:

- If it matches one of the four Specific Address registers.
- If it matches one of the four type ID registers.
- If it matches the hash address function.
- If it is a broadcast address (0xFFFFFFFFF) and broadcasts are allowed.
- If the MAC is configured to "copy all frames" (i.e., promiscuous mode).

Once the frame has been completely and successfully received and written to internal memory, the MAC then updates the receive blocks available entry and the SPI is notified that receive data is available for reading. The host is then responsible for reading the data from the SPI.

If the MAC is unable to write the receive data into internal memory, then a receive overrun interrupt is set. If the frame is not successfully received, a statistics register is incremented and the frame is discarded without informing software.

6.5.2 Statistics Registers

The statistics register block is located within Memory Map Selector 1 (MMS1) beginning with the Statistics 0 Register at 0x288 and runs through to the Statistics 11 Register at 0x293. The statistic registers consist of the statistic counters listed in Table 6-3 below.

Table 6-3. Available MAC Statistics

Receive Symbol Errors	Multicast Hash Match Frames Received
Length Field Errors	Broadcast Frames Received
Oversize Frames Received	VLAN Tagged Frames Received
Undersize Frames Received	Total Frames Received
Receive Resource Errors	Frames Received Without Error
Receive Buffer Overrun Errors	Transmit Abort Internal Errors
Receive FIFO Overrun Errors	Transmit Abort External Errors
Multiple Start-of-Packet Errors	Transmit FIFO Underrun Errors
Frame Check Sequence Errors	Transmit Buffer Underrun Errors
Type ID Match Frames Received	Excessive Collisions
Specific Address Match Frames Received	Total Frames Transmitted
Unicast Hash Match Frames Received	Frames Transmitted Without Error

These registers reset to zero on a read and stick at all ones when they count to their maximum value. They should be read frequently enough to prevent loss of statistics data.

The receive statistics registers are only incremented when the receive enable bit (RXEN) is set in the Network Control (MAC_NCR) register.

Once a statistics register has been read, it is automatically cleared.

Related Links

11.2.26. STATS0

7. Integrated PHY

This section describes features of the 10BASE-T1S physical layer transceiver integrated into the LAN8650/1. The PHY and MAC are connected via an internal Media Independent Interface (MII).

7.1 Interrupt Management

The LAN8650/1 integrated PHY supports multiple interrupt capabilities which are not part of the IEEE 802.3 specification. When selected PHY status events are detected as configured by the PHY Interrupt Mask Registers, the PHY Interrupt (PHYINT) status bit in the OPEN Alliance Status 0 (OA_STATUSO) register is set. If further enabled by PHY Interrupt Mask (PHYINTM) bit in the OPEN Alliance Interrupt Mask 0 (OA_IMASK0) register, the IRQ_N pin will be asserted low.

To assert the PHY Interrupt status for a given event in the Status 1 (STS1) and Status 2 (STS2) registers, the corresponding mask bit in the Interrupt Mask 1 (IMASK1) and Interrupt Mask 2 (IMSK2) registers must be written to '0' to enable the interrupt. When the associated event occurs setting the status bit, the PHY Interrupt status bit will also be asserted. When the event to negate the status bit is true, or the corresponding bit in the Interrupt Mask Register is set disabling the interrupt, the PHY Interrupt status bit will be deasserted.

All PHY interrupts are disabled (masked) following a reset.

Related Links

11.1.6. OA STATUSO

11.1.9. OA_IMASK0

11.5.2. STS1

11.5.3. STS2

11.5.5. IMSK1

11.5.6. IMSK2

7.2 Physical Layer Collision Avoidance (PLCA)

PLCA operates in conjunction with a CSMA/CD MAC to actively avoid collisions among half-duplex stations (known as PLCA nodes) allowing for greater network utilization. Each node on the network segment (i.e., collision domain) is assigned a unique Local ID. Transmit opportunities are then granted to each node in sequence based on their Local ID. The node configured as Local ID = 0is known as the PLCA coordinator. The role of the PLCA coordinator is to transmit a periodic synchronizing BEACON onto the physical media. All other nodes are referred to as a PLCA follower as they follow the synchronization of the coordinator. Once the BEACON has been received on the segment, all nodes begin counting transmit opportunities beginning with zero. Nodes detect their assigned transmit opportunity by counting the number of opportunities that have passed since the transmission of the BEACON by the PLCA coordinator. Each node may transmit when the number of transmit opportunities counted since the BEACON matches the Local ID assigned to the node. Within each transmit opportunity, the node assigned the current opportunity may either transmit a packet or yield. Once the node has transmitted a packet (or yielded), each node increments the transmit opportunity counter and the transmit opportunity goes to the next node. The first transmit opportunity of zero allows node with Local ID = 0 to transmit. Once a fixed number of transmit opportunities has been provided, the PLCA coordinator will transmit another BEACON starting the cycle over again. A BEACON followed by a fixed number of transmit opportunities is known as a PLCA bus cycle.

On multidrop topologies with multiple nodes connected to a shared media mixing segment, PLCA enables a fairness in opportunity to transmit such that one node cannot transmit more than one frame without each of the other nodes also being granted an opportunity to transmit. There are 2 exceptions that can be useful on multidrop segments where one or more nodes transmit more often than other nodes. PLCA allows individual nodes to be configured to transmit a burst of frames within

a single transmit opportunity. The LAN8650/1 can also assign individual nodes multiple transmit opportunities within the bus cycle.

PLCA is enabled by setting the PLCA Enable bit in the PLCA Control 0 (PLCA_CTRL0) register. The node Local ID is configured within the PLCA Local ID (ID) field of the PLCA Control 1 (PLCA_CTRL1) register and must be unique within the PLCA network segment to successfully avoid collisions. Additionally, the Local ID must be less than the number of transmit opportunities in each bus cycle in order to be granted a transmit opportunity (see the Node Count field of the PLCA Control 1 register). When the node is configured as the PLCA coordinator, then the number of transmit opportunities within each PLCA bus cycle (period between successive BEACON transmissions) is configured in the Node Count (NCNT) field of the PLCA Control 1 register.

The time for each transmit opportunity is configured within the PLCA Transmit Opportunity Timer (PLCA_TOTMR) register. The transmit opportunity timer must be set equal among all nodes in the PLCA collision domain to maintain synchronization among the nodes. The default transmit opportunity timer value, 3.2 µs, is appropriate for segments specified in IEEE 802.3 Clause 147 and should only be changed in special circumstances.

Important: The Transmit Opportunity timer must be configured identically across all nodes on the multidrop mixing segment.

Improper configuration of Transmit Opportunity timer may result in reduced network performance or collisions. Determination of the optimal Transmit Opportunity time requires knowledge of various delays of each of the vendor PHYs on the mixing segment and various physical layer propagation delay. It is recommended to leave this field at its default value unless a full evaluation of delays has been performed.

Tip: As collisions should not occur on a properly configured PLCA mixing segment, disabling collision detection is recommended when PLCA is enabled and active as it improves bus noise tolerance. See the PLCA Collision Detection section for more details.

When PLCA has been enabled on a node, the PLCA Status bit in the PLCA Status (PLCA_STS) register will indicate if the node is actively receiving a periodic PLCA BEACON. When the PLCA Status bit changes, the PLCA Status Changed (PSC) bit in the Status 0 (STS0) register will be set and, optionally, may assert the IRQ_N pin. This may be useful for diagnosing a misbehaving PLCA network segment.

Related Links

7.2.1. PLCA Burst Mode

7.2.2. Multiple PLCA Transmit Opportunities

8.5. PLCA Collision Detection

11.5.57. PLCA CTRL0

11.5.58. PLCA CTRL1

11.5.60. PLCA_TOTMR

11.5.59. PLCA STS

7.2.1 PLCA Burst Mode

Some applications, such as sensors or audio, may require the transmission of frequent small frames with a limited latency. As PLCA specifies only one transmit opportunity for each node in each bus cycle, these applications may experience significant latency when they are connected onto a multidrop mixing segment with applications that transmit large packets. For example, an audio application may require the transmission of eight stereo 16-bit audio samples as 64 byte packets

every 167 µs with minimal latency. When another node on the segment transmits a 1500 byte packet it will occupy the channel for 1.2 ms. The audio application will therefore buffer seven audio packets during the time that the channel is occupied. With standard PLCA, the audio application will only be able to transmit one of its audio packets during the next PLCA bus cycle. The result is that each successive audio packet the audio application needs to transmit is delayed with increasing latency.

One solution to this problem is to allow specific nodes to transmit more than one packet during its transmit opportunity. This ability to transmit a burst of multiple packets allows the audio application in the above example to empty its buffers and transmit all audio packets that it has queued, preventing the latency of the audio packets to grow beyond a tolerable limit.

The ability to transmit packets in a burst is configurable individually for each node on the segment. The Maximum Burst Count (MAXBC) field in the PLCA Burst Mode (PLCA_BURST) register configures the maximum number of additional packets allowed to transmit in each of the node's transmit opportunities. This is in addition to the initial packet that may be transmitted by the node in its transmit opportunity. Additionally, the Burst Timer (BTMR) field configures the amount of time the node may transmit (COMMIT) to maintain a hold on its current transmit opportunity after transmitting a packet to allow the MAC to transmit an additional packet. Once this timer expires, the node will then yield the transmit opportunity to the next node.

Restriction: To prevent undesirable traffic shaping behavior, PLCA burst mode should not be used in conjunction with credit based traffic shaping.

Related Links

11.5.61. PLCA BURST

7.2.2 Multiple PLCA Transmit Opportunities

The PLCA burst mode allows a node to transmit multiple packets within its single transmit opportunity in each PLCA bus cycle. While transmitting a burst of packets in a single transmit opportunity bounds the maximum latency to the period of a PLCA bus cycle, the latency may be further reduced by allowing a node multiple transmit opportunities in each PLCA bus cycle. This allows the same node to transmit multiple frames evenly spread in time throughout the PLCA bus cycle. This is accomplished by assigning multiple Local IDs to the node thereby allowing it multiple transmit opportunities. When the transmit opportunity counter matches any one of the multiple Local IDs assigned to the node, the node may then transmit a packet or yield the transmit opportunity.

The LAN8650/1 supports the assignment of up to eight additional transmit opportunities per PLCA bus cycle. The additional transmit opportunity Local IDs are configured in the ID1-ID8 fields of the PLCA Multiple ID 0-3 (MULTID0-MULTID3) registers.

The Clause 4 compliant MAC requires an inter-packet gap (IPG) of at least 9.6 μ s (96 bits) following the transmission of one packet before it will transmit another packet. Should consecutive transmit opportunities be assigned to the same node, transmit opportunities following a packet transmission will not be used until after the inter-packet gap has expired. For best performance when assigning multiple transmit opportunities to the same node it is therefore recommended that they should be interleaved with transmit opportunities assigned to other nodes.

Related Links

11.5.12. MULTID0

11.5.13. MULTID1

11.5.14. MULTID2

11.5.15. MULTID3

7.2.3 PLCA Transmit Opportunity Skipping

PLCA transmit opportunity skipping is useful to limit the amount of data low-priority nodes may transmit onto the network. When transmit opportunity skipping is enabled, the PHY is configured to skip a number of PLCA transmit opportunities once a packet has been transmitted. The PHY will yield the skipped transmit opportunities and prevent the internal MAC from transmitting by asserting the internal MII CRS signal. Once the specified number of transmit opportunities have been skipped, the PHY will re-enable normal PLCA operation of CRS and permit the MAC to transmit packets when its transmit opportunities occur.

PLCA transmit opportunity skipping is enabled by setting the PLCA Transmit Opportunity Skip Enable (TOSKPEN) bit in the PLCA Skip Control (PLCASKPCTL) register. The number of transmit opportunities to skip after transmitting a packet is configured in the PLCA Transmit Opportunity Skip (PLCATOSKP) register.

Restriction: To prevent undesirable traffic shaping behavior, PLCA transmit opportunity skipping should not be used in conjunction with credit based traffic shaping.

Related Links

11.5.46. PLCASKPCTL 11.5.47. PLCATOSKP

7.2.4 Physical Layer Collision Avoidance (PLCA) Diagnostics

The LAN8650/1 integrated PHY implements a number of features useful to the detection of PLCA misconfiguration on the network segment. These features include error status indications and event counters.

The PLCA error status indicators are located in the PHY Status 1 (STS1) register. Each indication also has an associated interrupt mask bit in the Interrupt Mask 1 (IMSK1) register to enable an assertion of the PHY interrupt (PHYINT) status bit of the OPEN Alliance Status 0 (OA_STATUS0) register when the event is detected. When enabled, an assertion of the PHY interrupt (PHYINT) status bit will also assert the IRQ_N pin to the station controller.

Each node of a PLCA segment must be assigned a unique Local ID to properly avoid collisions. The device has the ability to detect that another node is assigned the same Local ID by detecting the reception of a packet from the network during its assigned transmit opportunity. When this condition occurs, the Receive in Transmit Opportunity (RXINTO) status bit is set. Additionally, should a collision be detected while the device is transmitting in its assigned transmit opportunity, the Transmit Collision (TXCOL) status bit will be set.

Multiple nodes configured and acting as PLCA Coordinators also cause problems. Multiple Coordinators on the mixing segment will each transmit a BEACON according to its own PLCA bus cycle and timing. The result is that each Coordinator will receive BEACONs that it did not transmit. When configured as a PLCA Coordinator, it will set the Unexpected BEACON Received (UNEXPB) status bit to indicate the presence of another Coordinator on the network segment.

The PLCA Coordinator must be configured with the correct number of nodes on the segment to permit the proper number of transmit opportunities per bus cycle. If the Coordinator is configured to allow for too few transmit opportunities between BEACONs, Follower nodes may not have access to their assigned transmit opportunity. When the device is operating as a PLCA Follower, if it detects a BEACON before its assigned transmit opportunity occurs then the BEACON Received Before Transmit Opportunity (BCNBFTO) status bit is set to indicate that the configured PLCA bus cycle is too small to allow the Follower to transmit.

When configured as a PLCA Follower, the PLCA Status (PST) bit in the PLCA Status (PLCA_STS) register will be set as long as BEACONs are regularly being received from a Coordinator. If BEACONs are not received by the device it will continue incrementing its transmit opportunity counter. When the

transmit opportunity counter reaches the maximum count of 255, it will then stop incrementing and a 13 ms timer is started. If no BEACON is received after the timer expires, the PLCA Status bit will be cleared. When the PLCA Status bit is zero, the device will revert to CSMA/CD operation with PLCA deactivated. Once a BEACON is received the device will set the PLCA Status bit and return to normal PLCA operation. Refer to Clause 148 of the IEEE 802.3cg specification for additional details. When the PLCA Status bit changes, the PLCA Status Changed (PSTC) bit in the Status 1 register is set and will assert the PHY interrupt (PHYINT) status bit, if enabled in the Interrupt Mask 1 register.

The number of transmit opportunities in the PLCA bus cycle may be determined by reading the Maximum ID (MAXID) field of the PLCA Reconciliation Sublayer Status (PRSSTS) register. The MAXID field is updated at the end of each bus cycle. When read it will contain the number of transmit opportunities the PLCA coordinator allowed in the previous bus cycle.

Two event counters are implemented to aid the station controller in monitoring PLCA on the segment. These counters include a transmit opportunity counter and a BEACON counter. Each counter is enabled by setting the corresponding enable bit in the Counter Control (CTRCTRL) register. Writing a '1' to the Transmit Opportunity Counter Enable (TOCTRE) bit enables the transmit opportunity counter. The BEACON Counter Enable (BCNCTRE) bit enables the BEACON counter when set.

When enabled, the Transmit Opportunity Count High/Low (TOCNTH/TOCNTL) registers will contain the number of transmit opportunities the local PHY could have used to transmit since the last read. By polling the counter, the station controller can monitor that PLCA is active and that the PHY can transmit packets when needed.

Similarly, the BEACON Count High/Low (BCNCNTH/BCNCNTL) register contains the number of received BEACONs since the last read. The station controller can poll this counter to monitor the health of the PLCA Coordinator.

Related Links

11.1.6. OA STATUSO

11.1.9. OA_IMASK0

11.5.2. STS1

11.5.5. IMSK1

11.5.59. PLCA_STS

11.5.16. PRSSTS

11.5.7. CTRCTRL

11.5.8. TOCNTH

11.5.9. TOCNTL

11.5.10. BCNCNTH

11.5.11. BCNCNTL

7.3 Application Controlled Media Access (ACMA)

Physical Layer Collision Avoidance (PLCA) improves upon traditional CSMA/CD network utilization by eliminating collisions while also providing determinism for packet transmission. A customized media access method may be appropriate in systems requiring more control over latency or bandwidth allocation. The LAN8650/1 provides Application Controlled Media Access (ACMA) as an alternative to PLCA or CSMA/CD which allows implementation of custom scheduled access to the medium for applications requiring a fixed, deterministic latency. This could be used to implement a time-division multiple access (TDMA) method that allocates a specific transmit time slot for each station on the shared medium. Such a system avoids collisions, while reserving fixed bandwidth for each station and guarantees access latency to provide deterministic network behavior. A system using ACMA can even allow synchronization of the time slots across a network using the IEEE Std 802.1AS generalized Precision Time Protocol (gPTP).

The ACMA mode is enabled by setting the ACMA Enable (ACMAEN) bit in the ACMA Control (ACMACTL) register. The ACMA signal source is selected using the ACMA Input Select bit field (ACMASEL) in Pad Control Register (PADCTL) and can be either DIO2 or the output of Event Generator 0. This signal is always active high.

When enabled, the ACMA signal is used to control transmit access to the medium. If the ACMA input is not asserted, transmission from the MAC is held off. Only when the ACMA signal is asserted is the MAC allowed to transmit. If the MAC has a frame to send, it asserts TXEN and begins transmitting. The MAC can send multiple packets if the ACMA assertion time is long enough to permit it. Once transmission of a packet has started, the full packet will be transmitted regardless of the status of ACMA.

The timing of the ACMA signals depends on the bandwidth requirements and numbers of transmitters on the mixing segment. To work with the greatest variety of MACs, the minimum recommended ACMA enable pulse width is $10 \, \mu s$. This ensures that the device will have more than the inter-packet gap of 9.6 μs to enable TXEN after release of CRS. The minimum period between consecutive time slots on the mixing segment must not be less than the time to transmit the largest Ethernet packet or sequence of packets plus 9.6 μs .

Note: Other stations on the network must not assert ACMA until the previous time slot has expired. Failure to meet this constraint may result in collisions on the network or the loss of ability to transmit within the assigned time slot.

Collisions will not occur on properly engineered and synchronized ACMA. However, to aid in development and debug, when ACMA is enabled the device will set the Unexpected CRS (UNCRS) status bit in the Status 1 (STS1) register if receive carrier is sensed from the network when the ACMA pin is asserted. If needed, IRQ_N can be asserted when this status bit is asserted; this is configured by writing a 0 into the UNCRSM bit of the IMSK1 register.

Related Links

11.5.48. ACMACTL 11.6.3. PADCTRL 11.5.2. STS1 11.5.5. IMSK1

7.4 Credit Based Traffic Shaping

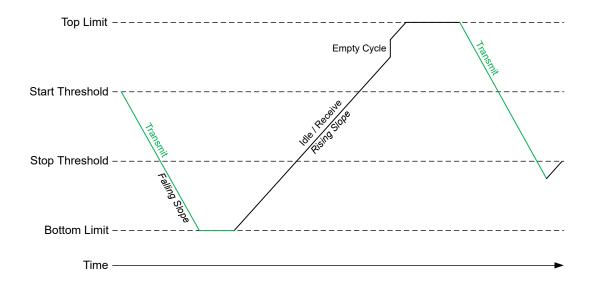
The LAN8650/1 implements a hardware credit based traffic shaper (CBS) to control the station's transmit bandwidth. A hardware credit counter is used to enable and disable the ability to transmit packets onto the medium. The PHY decrements the credit counter during transmit and increments the counter when the PHY is receiving data or the medium is idle. When the credit counter is below the stop threshold, the PHY does not have enough credits to transmit. The PHY will then hold the MAC off from transmitting by asserting the internal MII CRS signal. When the PHY is not transmitting, it will accumulate credits. Once the credit counter exceeds the start threshold, CRS will operate normally. Once the PHY allows the internal MAC to begin transmitting a packet, the entire packet will be transmitted even if the credit counter decrements below the stop threshold while it is transmitting.

The credit based traffic shaper is enabled by setting the CBS Enable (CBSEN) bit in the Credit Based Shaper Control (CBSCTRL) register. The credit based traffic shaper may be used with or without PLCA.

The transmit stop threshold is configurable in the Stop Threshold (STOPTHR) bit field in the Credit Based Shaper Stop Threshold High/Low (CBSSPTHH/CBSSPTHL) registers. The Start Threshold (STARTTHR) field in the Credit Based Shaper Start Threshold High/Low (CBSSTTHH/CBSSTTHL) registers is used to configure the transmit start threshold.

The Falling Slope (FALLSLP) field of the Credit Based Shaper Slope Control (CBSSLPCTL) register configures the rate at which the credit counter loses credits when transmitting. Similarly, the Rising

Slope (RISESLP) field configures the rate at which the credit counter will accumulate credits when the medium is idle or the PHY is receiving data. When PLCA is enabled, credits may additionally be accumulated at an accelerated rate when no transmission is detected within each PLCA bus cycle. The rate at which credits are accumulated for each empty PLCA bus cycle is configured by the Empty Cycle Credits (ECCRDS) field of the Credit Based Shaper Control register.


The credit counter will saturate and stop accumulating credits when the limit set by the Top Limit (TOPLIMIT) field in the Credit Based Shaper Top Limit High/Low (CBSTPLMTH/CBSTPLMTL) registers is reached. Likewise, the credit counter will saturate and stop losing credits at the limit set by the Bottom Limit (BOTLIMIT) field in the Credit Based Shaper Bottom Limit High/Low (CBSBTLMTH/CBSBTLMTL) registers. This prevents the credit counter from incrementing or decrementing into an overflow condition. The saturation of the credit counter also prevents the PHY from delaying transmission of a packet too long or transmitting a burst of packets. For example, the PHY may lose a significant number of credits by transmitting a maximal size packet. If the credit counter were not limited by a lower bound, it may take a significant amount of time for the PHY to accumulate enough credits to transmit another packet. Similarly, if the PHY has not transmitted in a long time, it may accumulate too many credits allowing it to transmit multiple frames if the credit counter were not limited by an upper bound. By controlling the top and bottom limits of the credit counter, the credit based shaper may be configured to transmit at the desired rate.

For debug or monitoring purposes, the current value of the credit counter may be obtained by reading the Credit Counter (CREDITCTR) field of the Credit Based Shaper Counter High/Low (CBSCRCTRH/CBSCRCTRL) registers.

Restriction: To prevent undesirable traffic shaping behavior, the credit based shaper should not be used in conjunction with PLCA transmit opportunity skipping. or with PLCA burst mode.

Figure 7-1. Credit Based Shaping Example

Related Links

11.5.45. CBSCTRL

11.5.36. CBSSTTHH

11.5.37. CBSSTTHL

11.5.34. CBSSPTHH

11.5.35. CBSSPTHL

11.5.38. CBSSLPCTL

11.5.39. CBSTPLMTH

11.5.40. CBSTPLMTL

11.5.41. CBSBTLMTH

11.5.42. CBSBTLMTL

11.5.43. CBSCRCTRH

11.5.44. CBSCRCTRL

7.5 Signal Quality Indicator (SQI)

The channel Signal Quality Indication (SQI) provides an indication of channel quality between nodes on the network segment. In the LAN8650/1, the SQI implementation is designed to be compatible with the OPEN Alliance specification for advanced diagnostic features for automotive Ethernet PHYs.

The SQI is determined by accumulating statistics on received data. When PLCA is used, a single node is selected by using the Transmit Opportunity ID (TOID) bit field of the SQI Configuration 0 (SQICFG0); the SQI is then computed from the data received only during that transmit opportunity. When PLCA is not enabled, this field should be set to request that the SQI will be computed over all received data. Statistics are calculated on the selected data and the resulting quality index is stored in the SQI Value (SQIVAL) field of the SQI Status 0 (SQISTS0) register in eight levels (between '000' = worst value and '111' = best value).

During the accumulation of statistics, it is possible that an error could occur. Such an error is indicated by setting bits in two different registers: the SQI Error (SQIERR) bit in the SQI Status 0 (SQISTSO) register and the SQI status bit in the Status 1 (STS1) register. In addition, an SQI error can be selected to assert the IRQ_N pin by clearing the SQI Interrupt Mask (SQIM) bit in the Interrupt Mask 1 (IMSK1) register.

Important: When an SQI measurement error has been detected, receive statistic accumulation is halted and the SQI Enable bit must be written to '0' before starting another SQI measurement.

The SQI feature operates in one of two modes. Polling mode is used for taking a single measurement or when comparing performance between multiple channels. Threshold alert mode is used to monitor one TOID continuously and provide an interrupt should SQI drop below a limit. These modes are described in the following sections.

Programming Model - Polling

In polling mode, the station controller polls the device to identify when a new SQI estimation is available. Polling mode is selected by setting the SQI Interrupt Threshold (SQIINTTHR) field of the SQI Configuration 2 (SQICFG2) to 11111b, which disables interrupts.

When writing to the configuration registers below, use read-modify-write operations to avoid accidental updates to reserved fields.

- 1. Configure the PLCA transmit opportunity of the node of interest into the Transmit Opportunity ID (TOID) bit field of the SQI Configuration 0 (SQICFG0) register. If not using PLCA, the value 0xFF should be used so that the SQI is computed from received packets from all nodes.
- 2. Ensure that the SQI Interrupt Threshold (SQIINTTHR) field of the SQI Configuration 2 (SQICFG2) register is at the default value of 11111b.
- 3. Set the SQI Enable (SQIEN) bit to '1' in the SQI Control (SQICTL) register to start SQI measurement.
- 4. The SQI statistical accumulation process has completed and an SQI computed once the SQI Valid (SQIVLD) bit is set. Periodically poll both the SQIVLD and SQIERR bit until one is set.
 - If the SQIVLD bit = '1', the measured SQI is returned in the SQI Value (SQIVAL) field.
 - Else if the SQIERR bit = '1', restart the measurement:
 - i. Write a '0' to the SQI Enable bit to clear the error.
 - ii. Write a '1' to the SQI Enable to restart.

Tip: The time required for the SQI statistical accumulation process to complete depends on the amount of data received from the node of interest and may therefore vary significantly. A polling rate of approximately once per second is recommended.

- 5. The SQI Valid status bit will be cleared when read and automatically set again once a new SQI value has been determined. The application may continue to monitor the SQI for the selected transmit opportunity by returning to step #3 above and polling for the SQI Valid bit to become set again.
- 6. To stop SQI measurements, write a '0' to clear the SQI Enable bit.

Programming Model - Threshold Alert Mode

In threshold alert mode, the device is configured to continually estimate the SQI and alert the station controller via an interrupt when the measured SQI falls below a specified threshold. When the SQI Interrupt Threshold is set to a value from 1 to 7, the device will assert the SQI status bit in the Status 1 (STS1) register any time the measured SQI is equal to or below the configured threshold. If the SQI Interrupt Mask (SQIM) bit is '0' in the Interrupt Mask 1 (IMSK1) register, the assertion of the SQI status bit will additionally generate an assertion on the IRQ_N pin.

When writing to the configuration registers below, use read-modify-write operations to avoid accidental updates to reserved fields.

- 1. Configure the PLCA transmit opportunity of the node of interest into the Transmit Opportunity ID (TOID) bit field of the SQI Configuration 0 (SQICFG0) register. If not using PLCA, the value 0xFF should be used so that the SQI is computed from received packets from all nodes.
- 2. Configure the SQI Interrupt Threshold (SQIINTTHR) field of the SQI Configuration 2 (SQICFG2) register for the SQI threshold at which the SQI status bit will be asserted. For example, configuring SQIINTTHR to 00101b will result in the SQI status bit being asserted when an SQI of 4 or below is measured.
- 3. Write a '0' to the SQI Interrupt Mask (SQIM) bit of the Interrupt Mask 1 (IMSK1) register to enable the assertion of the IRQ_N pin when the SQI status bit is set.
- 4. Set the SQI Enable (SQIEN) bit to '1' in the SQI Control (SQICTL) register to enable SQI measurement.
- 5. When the IRQ_N pin is asserted, read the Status 1 (STS1) register.

- If the SQIVLD bit = '1', the device measured an SQI of less than or equal to the configured threshold..
- Else if the SQIERR bit = '1', restart the measurement:
 - i. Write a '0' to the SQI Enable bit to clear the error.
 - ii. Write a '1' to the SQI Enable to restart.
- 6. To stop SQI measurements, write a '0' to clear the SQI Enable bit.

Related Links

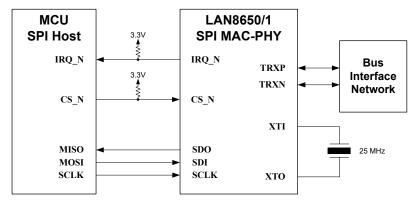
11.5.52. SQICTL 11.5.53. SQISTS0 11.5.54. SQICFG0 11.5.2. STS1 11.5.5. IMSK1

7.6 Cable Fault Diagnostics

The LAN8650/1 contains hardware support for cable fault diagnostics, which can be used to support, for example, OPEN Alliance harness defect detection requirements for automotive Ethernet PHYs. Using these features, it is possible for a station controller to determine various cable failures in a multidrop network. These failures include

- Both conductors open
- · Both conductors shorted together
- Both conductors shorted to power or ground

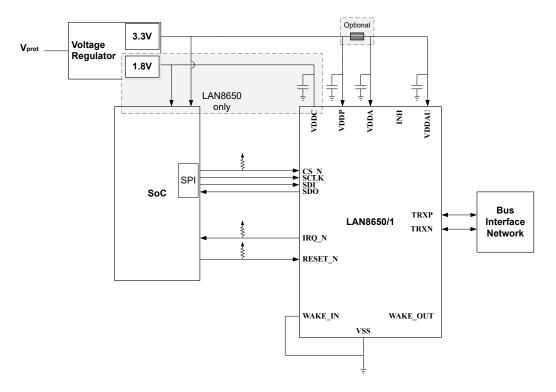
Additional information, including the software algorithm recommended for the station controller, is available under NDA.



8. Application Information

8.1 SPI Connectivity

Figure 8-1 illustrates device connectivity to the host MCU.


Figure 8-1. SPI Connectivity

8.2 System Configuration without Sleep Mode

Device connectivity without sleep mode is illustrated in the following figure. A configuration with sleep mode can be found in the Sleep Mode and System Power Management section.

Figure 8-2. Example System without Sleep Mode

Related Links

4.4.1. Sleep Mode and System Power Management

8.3 Power Connectivity

This section describes typical power configuration for the LAN8650/1 devices with the power supply architecture and recommended decoupling.

The VDDA pins supply power to the internal 3.3V analog circuits while the VDDP pins supply power to the 3.3V digital I/O pins. The internal digital logic of the LAN8650/1 operates at 1.8V. For the LAN8650, this 1.8V is supplied through the VDDC core power pins. The LAN8651 incorporates an internal 1.8V low drop-out regulator that powers the 1.8V core from the 3.3V VDDA analog power.

For applications requiring a low power sleep state and wake-up, an uninterrupted, continuous 3.3V power supply (3.3Vcont) must be connected to VDDAU to power the internal wake-up circuitry and the INH pin. The INH pin will then drive enable pins for the separate switched local power supplies for VDDA, VDDP and, for the LAN8650, VDDC.

In a design where sleep mode is not used, a continuous 3.3V power supply is not necessary and VDDAU is therefore connected to the same 3.3V power supply as VDDA. When VDDAU and VDDA are not connected to the same supply, the VDDA supply pin must never exceed the VDDAU supply pin by more than 0.5V. One approach to satisfying this power sequencing requirement is to connect a Schottky diode between the power supplies to prevent VDDA from exceeding VDDAU by more than a forward-biased voltage drop. The Schottky diode must be sized appropriately if used; the forward voltage drop must be less than 0.5V when the diode conducts current when VDDA exceeds VDDAU.

The LAN8650 has an additional restriction: the VDDC supply pin must never exceed the VDDP supply pin by more than 0.5V. A Schottky diode can also be used, as above, to ensure this requirement is met.

Proper decoupling of the LAN8650/1 power distribution network is a prerequisite for stable operation and best EMC performance. Low ESR 0.1 μ F and 0.01 μ F capacitors are placed at each of the VDDA, VDDP, and, in the case of the LAN8650, the VDDC pins. These decoupling capacitors should be located right at the pin as close as possible to minimize parasitic inductance and maximize their effectiveness. This is typically done by placing the decoupling capacitors on the opposite side of the board from the device directly under the pin and connecting them to the exposed pad ground. Priority is always given to the placement of the smaller 0.01 μ F decoupling capacitor during layout to achieve optimal effectiveness due to its lower capacitance. Each decoupling capacitor is ideally connected to the power plane through two vias to minimize interconnection inductance; decoupling capacitors should not share vias.

In addition to the decoupling capacitors at each pin, a bulk capacitance, typically 10 μ F, is placed near the LAN8650/1 in the direction of the power supply that will be supplying current. The bulk capacitors serve to provide low frequency energy that is outside the supply's response time.

For the LAN8651, a 4.7 μ F low ESR (metal film) capacitor is required on the CCOMP pin to provide external capacitive compensation to the internal 1.8V regulator. The addition of 0.1 μ F and 0.01 μ F decoupling capacitors to the CCOMP pin may be found useful, but are not required.

EMI sensitive applications requiring increased noise performance, may optionally add ferrite beads such as the Würth 742792640 to create localized power islands around the device for the VDDA, VDDAU, and VDDP supplies as illustrated in Figure 8-4 and Figure 8-5. When a ferrite bead is used, it should have a resistance of around 300Ω at 100 MHz. Additionally, the ferrite bead must have a DC current rating at least twice the maximum current to be supplied to the power pins to avoid core saturation and degradation in performance. During the prototype phase, it is recommended to include the option for the ferrite beads should the need arise to populate it to improve noise immunity.

Depending on the properties of the ferrite bead, its combination with the small decoupling capacitors may cause resonant peaking at certain frequencies leading to an undesired amplification of certain frequencies of noise in the system resulting in increased electromagnetic radiation and noise coupling in form of amplitude noise and jitter. Since the ferrite bead selection is highly dependent on the noise in the system, which varies from design to design, the large bulk capacitor,

typically 10 μ F, is recommended to be placed on the device side of the ferrite bead. When ferrite beads are used, a 10 μ F bulk capacitor on the supply side of the ferrite bead is not necessary. See Figure 8-4 and Figure 8-5.

Ideally, the board stackup will contain a large power plane layer adjacent to a ground plane layer. The capacitance between the power and ground planes serve to provide high frequency, low inductance decoupling. When local power islands are used, the islands should be smaller planes underneath the LAN8651, again adjacent to a ground plane to provide high-frequency capacitive decoupling. The use of power tracks are discouraged but, if used, should be as short and wide as possible to minimize sheet resistance and current dependent voltage ripple at the power distribution to the pins.

Important: The exposed ground pad (ePAD) of the package serves as the primary ground connection of the device and must be adequately connected to the board ground plane through an array of vias as specified in the Packaging Information section.

The analog pins (WAKE_IN, TRXP, TRXN, XTI, and XTO) must never be driven to more than the VDDAU supply. Furthermore, all other digital pins must never be driven to more than the VDDP supply. These requirements are applicable to power-up and power-down as well as normal operating conditions.

The following figures illustrate typical power configurations for the LAN8650/1.

Figure 8-3. LAN8650/1 Minimal Power Connectivity

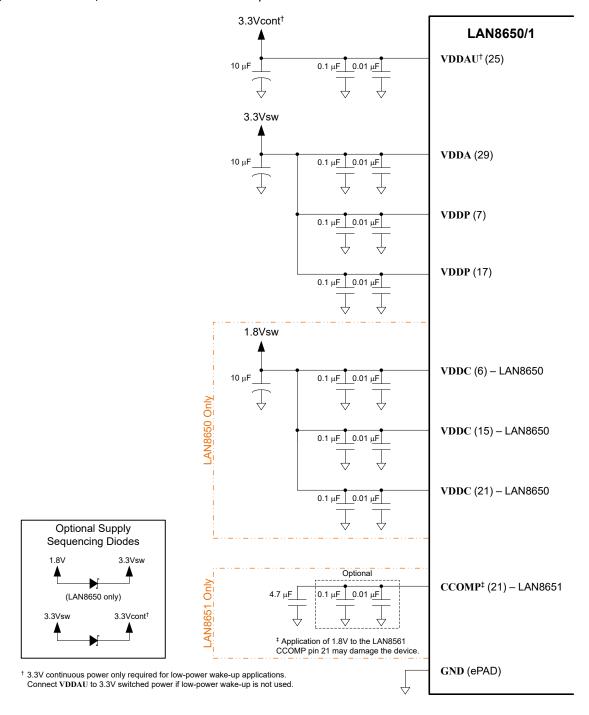
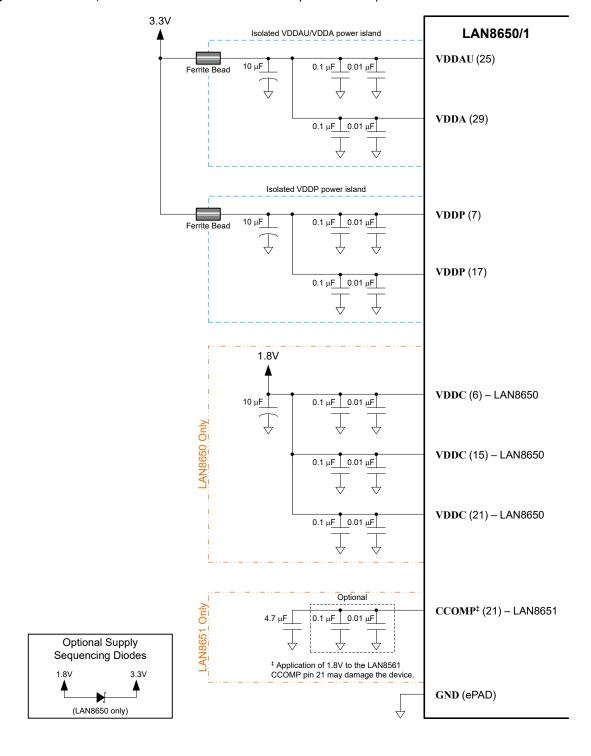



Figure 8-4. LAN8650/1 Localized Power Island Connectivity without Sleep

LAN8650/1 Isolated VDDAU power island **VDDAU (25)** 10 μF 0.1 μF | 0.01 μF Ferrite Bead 3.3Vsw Isolated VDDA power island **VDDA** (29) 0.1 μF | 0.01 μF Isolated VDDP power island **VDDP** (7) 0.1 μF 0.01 μF 10 μF Ferrite Bead **VDDP** (17) 0.1 μ<u>F</u> 0.01 μ<u>F</u> 1.8Vsw VDDC (6) - LAN8650 0.1 μF 0.01 μF 10 μF **VDDC** (15) – LAN8650 0.01 μF VDDC (21) - LAN8650 0.1 μF 0.01 μF Optional Supply Optional Sequencing Diodes CCOMP[‡] (21) - LAN8651 4.7 μF 0.1 μF | 0.01 μF 1.8V (LAN8650 only) [‡] Application of 1.8V to the LAN8561 3.3Vsw CCOMP pin 21 may damage the device. 3.3Vcont GND (ePAD)

Figure 8-5. LAN8650/1 Localized Power Island Connectivity with Sleep

3.3Vcont

8.4 Electromagnetic Compatibility (EMC) Considerations

The latest recommendations for schematic design and PCB layout to achieve optimal EMC performance for the LAN8650/1 can be found in the LAN86xx Bus Interface Network (BIN) Reference Design Application Note AN1718.

8.4.1 Output Drive Strength Control

The LAN8650/1 digital outputs are configurable to one of four drive strengths. By changing the digital output impedance in combination with the output load, the rise and fall time of driven output signals may be adjusted to meet timing requirements while reducing the sharp transitions and ringing that can be a source of unwanted radiated emissions. The pin output drive strength is configurable in groups based on their application as defined in the table below. The output drive level for each pin group is configured within the Pad Control (PADCTRL) register. The output drive currents are specified in the DC Specifications section.

Table 8-1. Digital Output Drive Pin Groups

Pin Name	Pin Number
Pin Group	1
SDO	10
Pin Group	2
IRQ_N	9
DIOB0	16
DIOB1	14
Pin Group	3
DIOA0	18
DIOA1	19
DIOA2	20
DIOA3	22
DIOA4	23
WAKE_OUT	24

Related Links

11.6.3. PADCTRL

9.5. DC Specifications (other than 10BASE-T1S PMA)

8.5 PLCA Collision Detection

When nodes in a mixing segment are properly configured for PLCA operation there will be no physical collisions. However, under certain conditions, including mixing segments with significant inherent noise due to reflections, and systems under high electromagnetic stress, false collisions may be detected. The false detection of late collisions will result in the transmitting node dropping the packet. As packets are typically received correctly in these conditions, it is recommended to disable collision detection at any time that PLCA is enabled and active. Collision detection is disabled by writing a zero to the Collision Detect Enable (CDEN) bit in the Collision Detector Control 0 (CDCTL0) register.

Note: Collision detection must be enabled when the node is operating purely CSMA/CD when PLCA is disabled or inactive.

Related Links

11.5.51. CDCTL0

8.6 Crystal Oscillator Selection

Oscillator margin is a measure of the stability of an oscillator circuit, and is defined in Equation 8-1 as the ratio of the oscillator's negative resistance (R_{NEG}) to the crystal's ESR (R_{ESR}).

Equation 8-1. Crystal Oscillator Margin Measurement

$$Margin = \frac{|R_{NEG}|}{R_{ESR}} = \frac{|R_{VAR}| + R_{ESR}}{R_{ESR}}$$

The negative resistance can be measured by placing a variable resistor (R_{VAR}) in series with the crystal and finding the largest resistor value where the crystal still starts up properly. This point would be just below where the oscillator does not start-up or where the start-up time is excessively long. Ideally, oscillator margin should be greater than 10, and should be at least 5. Smaller oscillator margin can affect the ability of the oscillator to start up.

The load capacitance, C_L , which is specified when ordering the crystal, is calculated from the capacitance on each leg of the crystal, C_x , combined with the stray capacitance, C_{stray} , which is contributed by PCB traces and chip pins. C_{stray} is usually in the range of 2pF to 5pF. The clock circuit requires that both crystal pins have matching C_x . C_L can then be calculated from

Equation 8-2. Crystal Load Capacitance

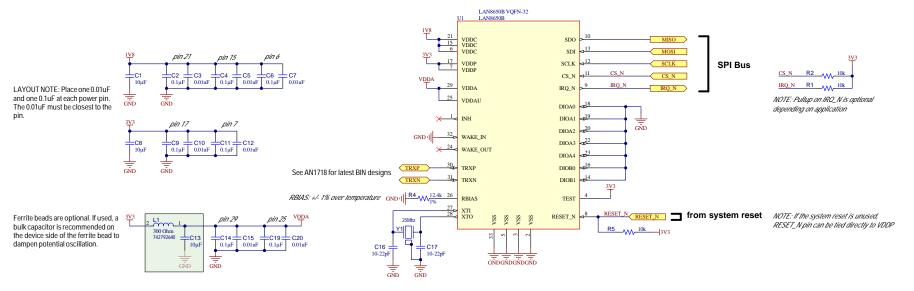
$$C_{L} = \frac{1}{2}C_{x} + C_{stray}$$

Larger capacitors also have a negative effect on oscillator margin. It is recommended that a crystal utilizing matching parallel load capacitors be used for the crystal input/output signals (XTI/XTO). The transconductance gain (g_m) of the internal inverting amplifier is nominally 18.2 mS.

The crystal cut and tolerance value listed in the Crystal Specifications section are typical values and may be changed to suit differing system requirements. Higher ESR values (than those listed in Crystal Specifications) run the risk of having start-up problems and should be thoroughly tested before being used. Contact the crystal manufacturer for more information.

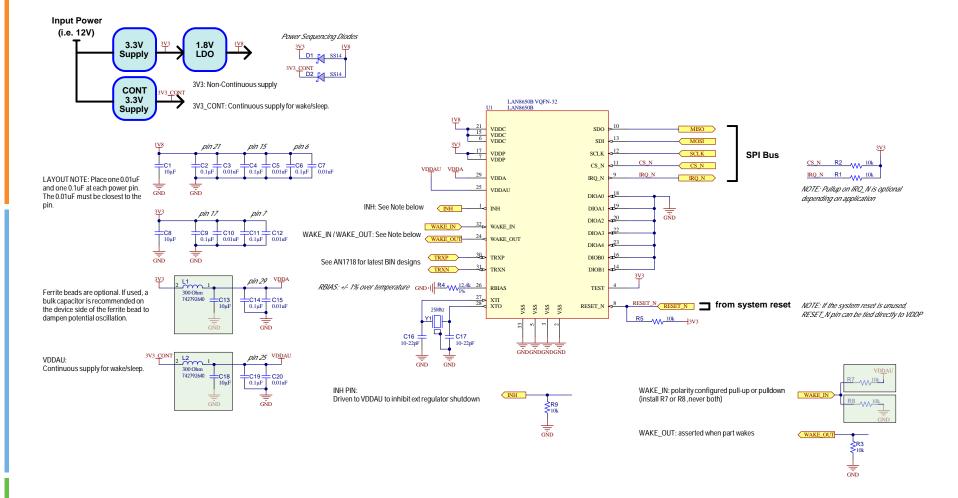
Related Links

9.7. Crystal Specifications

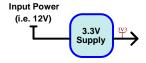

8.7 Reference Schematics

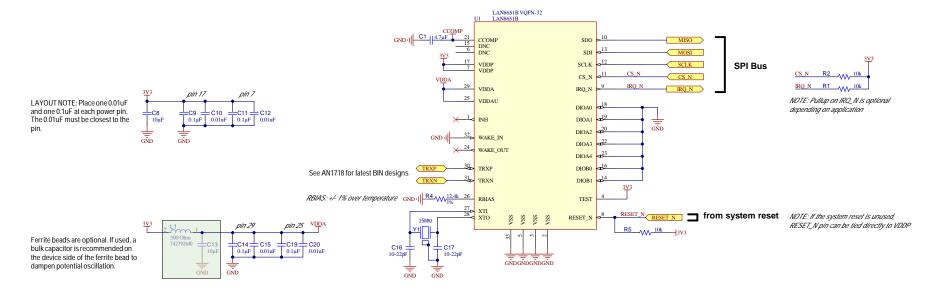
The schematics on the following pages contain example reference implementations of the LAN8650/1. Engineers may wish to include series termination resistors near digital output pins to aid in matching the driver and PCB trace impedance. At a minimum, a series 100 nF coupling capacitor (not shown) is needed on each of the TRXP and TRXN pins. Additional bus interface network (BIN) details are contained in a separate *LAN86xx Bus Interface Network (BIN) Reference Design Application Note AN1718*.

Figure 8-6. LAN8650 Reference Schematic (No Sleep/Wake)

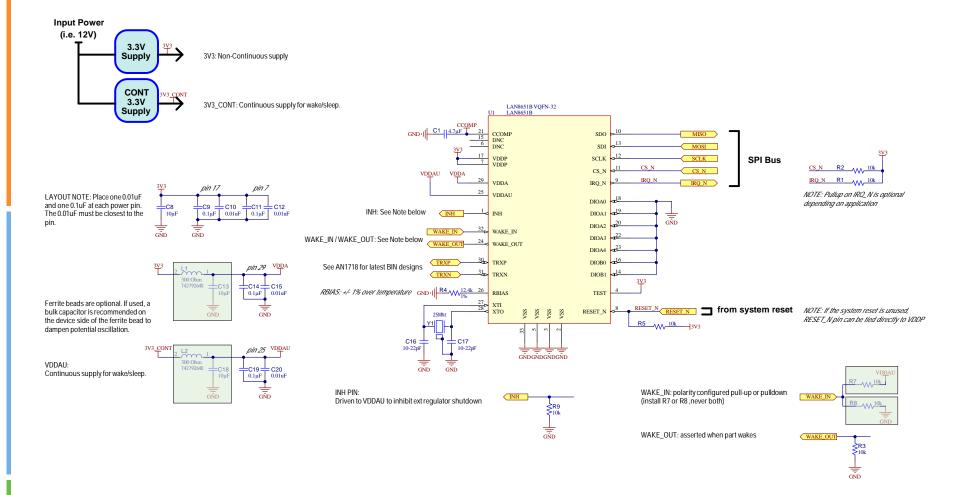


Application Information


DS60001734D - 8


Figure 8-7. LAN8650 Reference Schematic (With Sleep/Wake Support)

 \bigcirc


Figure 8-8. LAN8651 Reference Schematic (No Sleep/Wake)

 \bigcirc

Figure 8-9. LAN8651 Reference Schematic (With Sleep/Wake Support)

9. Operational Characteristics

9.1 Absolute Maximum Ratings

Stresses exceeding those listed in this section could cause permanent damage to the device. This is a stress rating only. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at any condition exceeding those indicated in Operating Conditions, DC Specifications, or any other applicable section of this specification is not implied.

Attention: Exposure at or above these limits may damage the device.

Table 9-1. Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Units	Notes
Power Supply Voltage:					Note 1
Core (VDDC)		-0.5	2.5	V	LAN8650 only
Digital I/O (VDDP)		-0.5	3.9	V	
Analog (VDDA)		-0.5	3.9	V	
Continuous (VDDAU)		-0.5	3.9	V	
Voltage applied to pins:					
TRXP, TRXN	$V_{TRXP/N}$	-27	42	V	
TRXP/TRXN (differential)	V_{DIFF}	-25	25	V	
XTI/REFCLKIN, RBIAS		-0.5	VDDA + 0.5	V	Note 2
WAKE_IN		-0.5	VDDAU+ 0.5	V	Note 2
All other pins		-0.5	VDDP + 0.5	V	Note 2
Junction Temperature Under Bias	T _J	-40	150	°C	
Storage Temperature	T _{stg}	-55	150	°C	
Lead Temperature Range		Re	efer to JEDEC Spec.	J-STD-020	
ESD according to IBEE CAN EMC					Note 3
TRXP, TRXN (to VSS)		-8	+8	kV	
ESD Human Body Model					Note 4
TRXP, TRXN (to VSS)		-8	+8	kV	
All other pins		-2	+2	kV	
ESD Charge Device Model		-1	+1	kV	AEC-Q100-011

Notes:

- 1. When powering this device from laboratory or system power supplies, it is important that the absolute maximum ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes on their outputs when AC power is switched on or off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibility exists, it is suggested that a clamp circuit be used.
- 2. Voltage applied to pins must remain below 3.9V.
- 3. IBEE CAN EMC test specification following IEC 62228, IEC 61000-4-2: (330 Ω /150 pF)
- 4. Test specification following JESD22-A114/AEC-Q100-002: (1.5 k Ω /100 pF)

9.2 Operating Conditions

Proper operation of the device is guaranteed only within the ranges specified in this section.

Table 9-2. Operating Conditions

Description	Symbol	Min	Max	Units	Notes
Power Supply Voltage:					
Core I/O (VDDC)		1.71	1.89	V	Note 1
Digital I/O (VDDP)		3.135	3.465	V	
Continuous (VDDAU)		3.135	3.465	V	
Analog (VDDA)		3.135	3.465	V	Note 2
Maximum Input Voltage:					
XTI, RBIAS		-0.3	VDDA + 0.3	V	
WAKE_IN		-0.3	VDDAU + 0.3	V	
All other pins		-0.3	VDDP + 0.3	V	
Power Supply Ramp Rate		300		μs/V	
Ambient Operating Temperature (Still Air)	T _A	-40	+125	°C	

Notes

- 1. LAN8650 only: The VDDC pin must not exceed the VDDP pin by more than 0.5V, including during power-up and power-down..
- 2. The VDDA pin must never exceed the VDDAU pin by more than 0.5 V, including during power-up and power-down.

9.3 Power Consumption

All parameters tested unless otherwise noted

Table 9-3. LAN8650 Current Consumption and Power Dissipation

Supply		Current				Notes	
	Typical	Maximum	Units	Typical	Maximum	Units	
Sleep							
VDDAU	40	56	μΑ	132	194	uW	Notes 1, 2
Normal operation							
VDDAU	570		μΑ				Note 3
VDDA	26	35	mA				Note 3
VDDP	5		mA				Note 4
VDDC		25					
Power				137	167	mW	Note 5

Notes:

- 1. Current for sleep mode is only for VDDAU. All other power pins are assumed to be unpowered.
- 2. Maximum sleep power calculated for VDDAU = 3.465V
- 3. Continuous transmission.
- 4. Typical VDDP current when receiving data. Current is lower in other modes.
- 5. Maximum power occurs during continuous transmission with VDDC = 1.89V and all power supplies = 3.465V

Table 9-4. LAN8651 Maximum Current Consumption and Power Dissipation

Supply		Current			Notes		
	Typical	Maximum	Units	Typical	Maximum	Units	
Sleep							
VDDAU	40	56	μΑ	132	194	uW	Notes 1, 2
Normal operation							
VDDAU	570		μΑ				Note 3
VDDA	41	55	mA				Note 3
VDDP	5		mA				Note 4
Power				164	200	mW	Note 5

Notes:

- 1. Current for sleep mode is only for VDDAU. All other power pins are assumed to be unpowered.
- 2. Maximum sleep power calculated for VDDAU = 3.465V
- 3. Continuous transmission.
- 4. Typical VDDP current when receiving data. Current is lower in other modes.
- 5. Maximum power occurs during continuous transmission with all supplies at 3.465

Related Links

4.4. Sleep Mode

9.4 Package Thermal Specifications

Note: Thermal parameters are measured or estimated for devices in a multi-layer 2S2P PCB per JESD51.

Table 9-5. LAN8650/1 Package Thermal Parameters (32-VQFN)

Parameter	Symbol	Value	Units	Notes
Junction-to-Ambient	Θ_{JA}	43	°C/W	Still air
Junction-to-Top-of-Package	Ψ_{JT}	0.6	°C/W	Still air
Junction-to-Case	Θ_{JC}	7.6	°C/W	

9.5 DC Specifications (other than 10BASE-T1S PMA)

All parameters tested unless otherwise noted.

Table 9-6. DC Electrical Characteristics (other than 10BASE-T1S PMA)

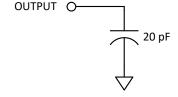
Parameter	Symbol	Min	Тур	Max	Units	Notes
VIS-VDDP Type Input Buffers	·					'
Low-Level Input Voltage	V _{IL}			0.8	V	
High-Level Input Voltage	V _{IH}	2.0			V	
Input Hysteresis	ΔV_{hys}	25		230	mV	Note 1
Input Leakage	IL	-10		10	μΑ	V _{IN} = VSS or VDDP
Input Capacitance	C _{IN}			3	pF	Note 2
VI-VDDAU Type Input Buffers						
Low-Level Input Voltage	V _{IL}			0.8	V	
High-Level Input Voltage	V _{IH}	2.0			V	
Input Leakage	IL	-10		10	μΑ	V _{IN} = VSS or VDDAU
Input Capacitance	C _{IN}			3	pF	
VO-VDDP Type Output Buffers	'					
Low-Level Output	V _{OL}			0.4	٧	Note 3
	I _{OL-L}	-0.6			mA	Low drive
	I _{OL-ML}	-1.7			mA	Medium-low drive
	I _{OL-MH}	-2.6			mA	Medium-high drive
	I _{OL-H}	-3.5			mA	High drive
High-Level Output	V _{OH}	VDDP-0.4			V	Note 4
	I _{OH-L}	0.45			mA	Low drive
	I _{OH-ML}	1.2			mA	Medium-low drive
	I _{OH-MH}	2.0			mA	Medium-high drive
	I _{OH-H}	2.9			mA	High drive
VOD-VDDP Type Output Buffers	5					
Low-Level Output	V _{OL}			0.4	V	Note 3
	I _{OL-L}	-0.57			mA	Low drive
	I _{OL-ML}	-1.7			mA	Medium-low drive
	I _{OL-MH}	-2.8			mA	Medium-high drive
	I _{OL-H}	-3.6			mA	High drive
VOH-VDDP Type Output Buffers	5					
Low-Level Output	V _{OL}			0.4	V	Note 3
	I _{OL-L}	-1.3			mA	Low drive
	I _{OL-ML}	-2.7			mA	Medium-low drive
	I _{OL-MH}	-4.0			mA	Medium-high drive

continued						
Parameter	Symbol	Min	Тур	Max	Units	Notes
	I _{OL-H}	-5.3			mA	High drive
High-Level Output	V _{OH}	VDDP-0.4			V	Note 4
	I _{OH-L}	1.0			mA	Low drive
	I _{OH-ML}	2.0			mA	Medium-low drive
	I _{OH-MH}	2.8			mA	Medium-high drive
	I _{OH-H}	3.5			mA	High drive
VOD-VDDAU Type Output Buffers						
High-Level Output	V _{OH}	VDDAU-0.4			V	
	I _{OH}	1.7			mA	

Notes:

- 1. Characterized on samples.
- 2. Design parameter, not tested.
- 3. I_{OL} is configurable to four levels of sink current.
- 4. I_{OH} is configurable to four levels of source current.

9.6 AC Specifications


This section details the various AC timing specifications of the device. All parameters are tested unless otherwise noted.

Note: The Ethernet TRXP/TRXN pin timing adheres to IEEE Std 802.3cg. Refer to the IEEE Std 802.3cg specification for detailed Ethernet timing information.

9.6.1 Equivalent Test Load

Output timing specifications assume a 20 pF equivalent test load, unless otherwise noted, as illustrated below.

Figure 9-1. Output Equivalent Test Load

9.6.2 General Signals and Clocks

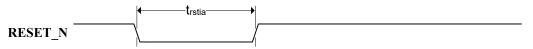
Table 9-7. AC Electrical Characteristics (other than Ethernet PMA)

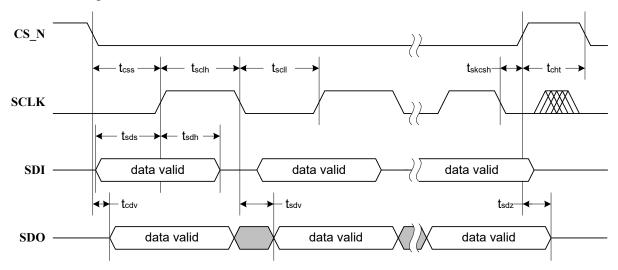
Parameter	Symbol	Min	Тур	Max	Units	Additional Information
VO-VDDP Type Output Buffe	ers				•	
Output Rise Time	t _r		23		ns	Low drive
(10% to 90%)			8		ns	Medium-low drive
			5		ns	Medium-high drive
			3		ns	High drive
Output Fall Time	t _f		23		ns	Low drive
(90% to 10%)			8		ns	Medium-low drive
			5		ns	Medium-high drive
			3		ns	High drive
VODL-VDDP Type Output Bu	uffers					
Output Fall Time	t _f		23		ns	Low drive
(90% to 10%)			7		ns	Medium-low drive
			5		ns	Medium-high drive
			3		ns	High drive
VOH-VDDP Type Output But	ffers					
Output Rise Time	t _r		10		ns	Low drive
(10% to 90%)			5		ns	Medium-low drive
			4		ns	Medium-high drive
			3		ns	High drive
Output Fall Time	t _f		10		ns	Low drive
(90% to 10%)			5		ns	Medium-low drive
			4		ns	Medium-high drive
			3		ns	High drive
VODH-VDDAU Type Output	Buffers					·
Output Rise Time	t _r		27		ns	
(10% to 90%)						

9.6.3 RESET_N Timing

The following diagram illustrates the RESET_N timing requirements. Assertion of RESET_N is not a requirement. However, if used, it must be asserted for the minimum period specified.

Figure 9-2. RESET_N Timing




Table 9-8. RESET_N Timing

Description	Symbol	Min	Тур	Max	Units
RESET_N input assertion time	t _{rstia}	5			μs

9.6.4 SPI Port

Figure 9-3. SPI Timing

Table 9-9. SPI Port AC Operational Characteristics

Description	Symbol	Min	Max	Units
Maximum SCLK frequency	f _{sck}		25	MHz
SCLK low time	t _{scII}	15		ns
SCLK high time	t _{sclh}	15		ns
SCLK low to CS_N high	t _{skcsh}	13.5		ns
CS_N low to SCLK rising	t _{css}	8		ns
CS_N low to SDO valid	t _{cdv}		20	ns
CS_N high time	t _{cht}	200		ns
SDI valid to SCLK rising	t _{sds}	4.3		ns
SDI hold from SCLK rising	t _{sdh}	4		ns
SCLK falling to SDO valid	t _{sdv}		21	ns
CS_N high to SDO Hi-Z	t _{sdz}		8	ns

9.6.5 10BASE-T1S PMA Electrical Characteristics

This section contains electrical characteristics of the TRXP/TRXN pins to enable the design of IEEE Std 802.3cg compliant devices.

9.6.5.1 10BASE-T1S PMA Transmitter Characteristics

Table 9-10. 10BASE-T1S PMA Transmitter Electrical Characteristics

Parameter	Symbol	Min	Тур	Max	Units	Additional Information
Differential driver output	V_{od}	0.8	1.0	1.2	V	Figure 9-4
Cycle-to-cycle jitter	t _{j(c-c)}		0.65	1.2	ns	Note 1 Figure 9-4
Rise time, Fall time (20%-80%)	t _{rtx} , t _{ftx}	7.9		14.75	ns	Note 1 Figure 9-5
Droop		0		13	%	Note 1 Figure 9-4

Figure 9-4. Differential Output Test Fixture

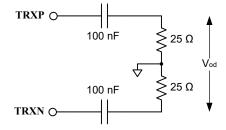


Figure 9-5. Transmitter Output Rise/Fall Test Fixture

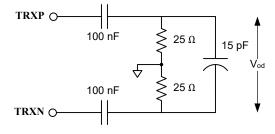
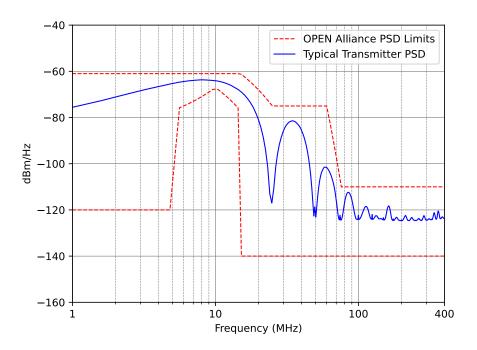
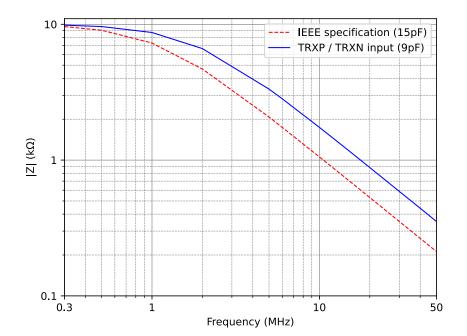



Figure 9-6. Transmitter Power Spectral Density (Typical)

Power spectral density was measured in a multidrop configuration (50 Ω termination) as shown in Figure 9-4 with the transmitter in the IEEE Transmitter PSD mask test mode 3. The upper and lower limits shown are as proposed by the OPEN Alliance *TC14 10BASE-T1S System Implementation Specification*, Version 1.0.

9.6.5.2 10BASE-T1S PMA Receiver Characteristics


Table 9-11. 10BASE-T1S PMA Receiver Electrical Characteristics

Parameter	Symbol	Min	Тур	Max	Units	Additional Information
Receiver differential sensitivity	V_{th}		0		mV	
Single-ended Input Resistance	R _{SE}		5.4	6	kΩ	Note 1
Differential Input Resistance	R _{DIFF}		14.5		kΩ	Note 1
Differential input Capacitance	C _{DIFF}	6.5		8.5	pF	20 MHz Note 1
Common Mode Voltage Range	V _{CM}	-30		+30	V_{pp}	2Mhz Note 1

Note:

1. C = Characterized on samples

Figure 9-7. Differential Input Impedance (Typical)

9.6.6 Wake-up Signal Characteristics and Timing

The following diagram illustrates the timing characteristics as the device wakes from sleep.

Figure 9-8. Wake Signal Timing

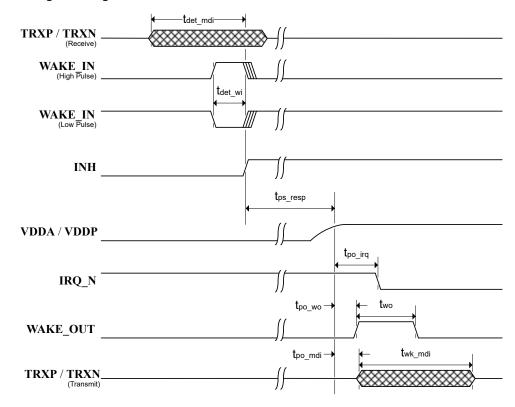


Table 9-12. 10BASE-T1S PMA Receiver Wake Signal Characteristics

Parameter	Symbol	Min	Тур	Max	Units	Additional Information
MDI wake detection time	t _{det_mdi}	250		450	μs	Note 1
MDI wake signal threshold	V_{thresh_mdi}	100		700	mV_{pp}	Note 2

Notes:

- 1. The device will not wake if the signal duration is less than or equal to the minimum value of t_{det_mdi} . It will wake if the signal duration is greater than or equal to the maximum value of t_{det_mdi} . The behavior is undefined for signal duration between these limits.
- 2. The device will not wake if the signal amplitude is less than or equal to the minimum V_{thresh_mdi} . It will wake if the signal amplitude is greater than or equal to the maximum value V_{thresh_mdi} . The behavior is undefined for amplitudes between these limits.

Table 9-13. WAKE_IN Signal Characteristics

Parameter	Symbol	Min	Тур	Max	Units	Additional Information
WAKE_IN detection time	t _{det_wi}	15		40	μs	Notes 1, 2

Notes:

- The device will not wake if the signal duration is less than or equal to the minimum value of t_{det_wi}. It will wake if the signal duration is greater than or equal to the maximum value of t_{det_wi}. The behavior is undefined for signal duration between these limits.
- 2. The WAKE_IN pin is a standard VI-VDDAU type input buffer. See the section DC Electrical Characteristics (other than 10BASE-T1S PMA) for details.

Table 9-14. Wake Signal Time

Description	Symbol	Min	Тур	Max	Units	Additional Information
IRQ_N assertion time after all power supplies valid	t_{po_irq}		6.6		μs	
MDI wake forward signaling activity start after all power supplies valid	t _{po_mdi}		2		μs	
WAKE_OUT wake forward assertion time after all power supplies valid	t _{po_wo}		1.8		μs	
WAKE_OUT pulse width	t _{wo}		90		μs	
MDI wake signaling time	t _{wk_mdi}		1		ms	
SPI valid after all power supplies valid	t _{po_spi}					
Power supply response time	t _{ps_resp}	Application Specific				Note 1

Note:

 The power supply response time is the length of time from the power supplies being enabled by INH being driven high to the time the VDDP, VDDA, and VDDC supplies are high enough to release the internal power-on reset circuits. This time is dependent upon the implementation of the external power supply circuits and therefore is implementation specific.

Related Links

9.5. DC Specifications (other than 10BASE-T1S PMA)

9.7 Crystal Specifications

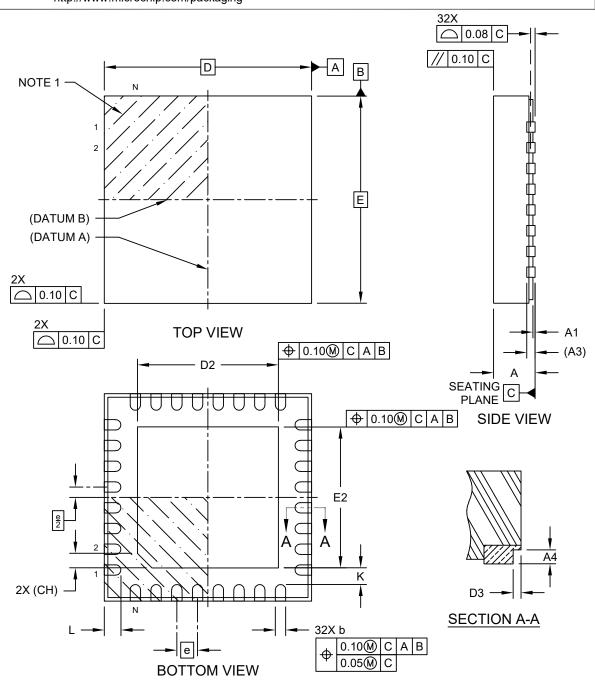
A 25 MHz crystal must be placed between XTO and XTI. This crystal should meet the requirements in Table 9-15 below.

Table 9-15. Recommended Crystal Specifications

Parameter	Min	Тур	Max	Units	Notes
Crystal Cut		AT (typical)			
Crystal Oscillation Mode		Funda	mental		
Crystal Calibration Mode		Parallel Res	onant Mode		
Frequency		25.000		MHz	
Tolerance			±100	ppm	Note 1, 2
Recommended Maximum Shunt Capacitance			6	pF	
Recommended Load Capacitance		10-22		pF	Note 3
Drive Level		50		μW	
Recommended Maximum Equivalent Series Resistance (ESR)			100	Ω	
XTI/XTO Pin Capacitance		2		pF	Note 4

Notes:

- 1. The total deviation for the transmitter clock frequency is specified by IEEE 802.3cg as ±100 ppm.
- 2. This parameter must include increased variation over the expected operational lifetime of the application (aging), temperature, and load capacitance.
- 3. Load capacitance per crystal terminal. The terminals should each see the same load.
- 4. This number includes the pad, the bond wire and the lead frame. Printed circuit board trace capacitance is not included in this value. The XTI/XTO pin and PCB trace capacitance values are required to accurately calculate the value of the two external load capacitors. These two external load capacitors determine the accuracy of the 25.000 MHz frequency.

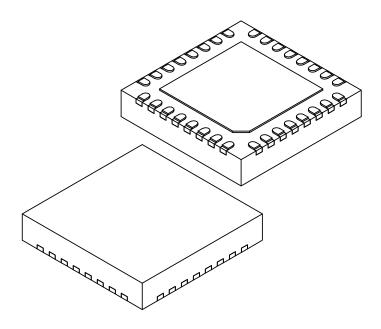


10. Packaging Information

10.1 32-VQFN

32-Lead Very Thin Plastic Quad Flat, No Lead Package (LMX) - 5x5x1.0 mm Body [VQFN] With 3.4 mm Exposed Pad and Stepped Wettable Flanks

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



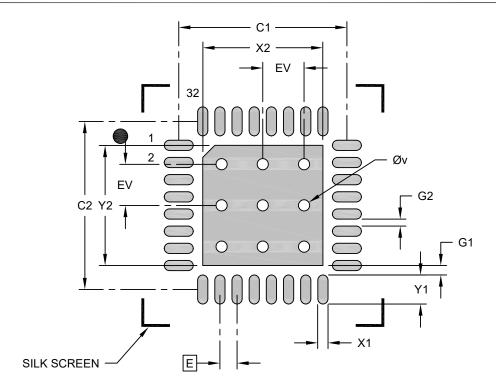
Microchip Technology Drawing C04-500 Rev B Sheet 1 of 2

32-Lead Very Thin Plastic Quad Flat, No Lead Package (LMX) - 5x5x1.0 mm Body [VQFN] With 3.4 mm Exposed Pad and Stepped Wettable Flanks

For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	IILLIMETER:	S	
Dimension	MIN	NOM	MAX	
Number of Terminals	Ν		32	
Pitch	е		0.50 BSC	
Overall Height	Α	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3	0.203 REF		
Overall Length	D	5.00 BSC		
Exposed Pad Length	D2	3.30	3.40	3.50
Overall Width	Е	5.00 BSC		
Exposed Pad Width	E2	3.30	3.40	3.50
Terminal Width	b	0.20	0.25	0.30
Terminal Length	L	0.30	0.40	0.50
Terminal-to-Exposed Pad	K	0.20	-	-
Exposed Pad Corner Chamfer	CH	0.35 REF		
Step Height	A4	0.10	-	0.19
Step Length	D3	0.035	0.060	0.085

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated


Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-500 Rev B Sheet 1 of 2

32-Lead Very Thin Plastic Quad Flat, No Lead Package (LMX) - 5x5x1.0 mm Body [VQFN] With 3.4 mm Exposed Pad and Stepped Wettable Flanks

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	N	IILLIMETER:	S		
Dimension	Limits	MIN	NOM	MAX	
Contact Pitch	Е		0.50 BSC		
Optional Center Pad Width	X2			3.50	
Center Pad Length	Y2			3.50	
Contact Pad Spacing	C1		4.90		
Contact Pad Spacing	C2		4.90		
Contact Pad Width (32)	X1			0.30	
Contact Pad Length (32)	Y1			0.85	
Contact Pad to Center Pad (32)	G1	0.20			
Contact Pad to Contact Pad (X28)	G2	0.20			
Thermal Via Diameter	V		0.33		
Thermal Via Pitch	EV		1.20		

Notes:

- 1. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2500 Rev B

10.2 Package Marking Information

Figure 10-1. LAN8650 Top Mark

Figure 10-2. LAN8651 Top Mark

LAN8650 Device Identifier
rr Product Revision Code
yy last two digits of Assembly Year
ww Assembly Work Week
nnn Tracking Number
cc Country of Origin Abbreviation (optional)

(e3) Pb-free JEDEC designator for Matte Tin (Sn)
* This package is Pb-free. The Pb-free JEDEC designator (e3)
can be found on the outer packaging for this package.

Legend:

LAN8651 Device Identifier
rr Product Revision Code
yy last two digits of Assembly Year
ww Assembly Work Week
nnn Tracking Number
cc Country of Origin Abbreviation (optional)

Pb-free JEDEC designator for Matte Tin (Sn)

This package is Pb-free. The Pb-free JEDEC designator (@3)

can be found on the outer packaging for this package.

11. Register Descriptions

The OPEN Alliance 10BASE-T1x MAC-PHY Serial Interface specification defines the register memory map selector (MMS) field as a 4 bit field which allows for up to 16 different memory maps. The standard further defines which MMS should be used for required registers and register classes in a compliant device, including mapping of registers required by the 10BASE-T1S standard. The standard also includes areas for vendor specific information.

This chapter describes the device registers of the LAN8650/1, organized by MMS value.

Table 11-1. Control and Status Register Memory Map Selector (MMS)

MMS	Width (bits)	Description of Registers
0	32/16	11.1. Open Alliance 10BASE-T1x MAC-PHY Standard Registers including PHY Clause 22 Basic Control and Status Registers
1	32	11.2. MAC Registers
2	16	11.3. PHY PCS Registers
3	16	11.4. PHY PMA/PMD Registers
4	16	11.5. PHY Vendor Specific Registers
5-9	-	Reserved
10	16	11.6. Miscellaneous Register Descriptions
11-15	-	Reserved

For details on register bit attribute notation, refer to the section Register Bit Types.

Related Links

1.3. Register Bit Types

11.1 Open Alliance 10BASE-T1x MAC-PHY Standard Registers

The OPEN Alliance standard defines Memory Map Selector (MMS) 0 as the location for control and status registers that are specific to this standard. Some of these registers are optional. The section defines the various registers implemented in the LAN8650/1.

The various Clause 22 Control and Status Registers (CSRs) are included in MMS0, beginning at offset 0xFF00. These CSRs follow the IEEE 802.3 (Clause 22.2.4) management register set. All functionality and bit definitions comply with these standards.

RESERVED address space must not be written except when specifically directed to by Microchip. Failure to heed this warning may result in adverse operation and unexpected results.

Refer to the Register Bit Types section for details on register bit attribute notation.

Address	Name	Bit Pos.	7	6	5	4	3	2	1	0
		31:24								
0.00	04.15	23:16								
0x00	OA_ID	15:8								
		7:0		MAJVI	ER[3:0]			MINV	ER[3:0]	
		31:24				OUI[2	21:14]			
001	OA BUIVID	23:16				OUI	13:6]			
0x01	OA_PHYID	15:8			OUI	[5:0]			MODE	L[5:4]
		7:0		MODI	EL[3:0]			REVISI	ON[3:0]	
		31:24								
0.00	OA STREAM	23:16								
0x02	OA_STDCAP	15:8						TXFCSVC	IPRAC	DPRAC
		7:0	CTC	FTSC	AIDC	SEQC			MINBPS[2:0]	
		31:24								
0.00	OA DECET	23:16								
0x03	OA_RESET	15:8								
		7:0								SWRESET
		31:24								
0.04	OA CONFICO	23:16								
0x04	OA_CONFIG0	15:8	SYNC TXFCSVE		RFA[1:0]		TXCTHRESH[1:0]		TXCTE	RXCTE
		7:0	FTSE	FTSS	PROTE	SEQE			BPS[2:0]	
		31:24								
0.00	OA STATUSO	23:16								
0x08	OA_STATUS0	15:8				CPDE	TXFCSE	TTSCAC	TTSCAB	TTSCAA
		7:0	PHYINT	RESETC	HDRE	LOFE	RXBOE	TXBUE	TXBOE	TXPE
		31:24				SEV		TTSCMC	TTSCMB	TTSCMA
000	OA CTATUCA	23:16	TTSCOFC	TTSCOFB	TTSCOFA	BUSER	UV18	ECC	FSMSTER	
0x09	OA_STATUS1	15:8								
		7:0							TXNER	RXNER
		31:24								
000	OA BUESTS	23:16								
0x0B	OA_BUFSTS	15:8	TXC[7:0]							
		7:0				RBA	[7:0]			
		31:24								
0,,00	OA INAACKO	23:16								
0x0C	OA_IMASK0	15:8				CPDEM	TXFCSEM	TTSCACM	TTSCABM	TTSCAAM
		7:0	PHYINTM	RESETCM	HDREM	LOFEM	RXBOEM	TXBUEM	TXBOEM	TXPEM
		31:24				SEVM		TTSCMCM	TTSCMBM	TTSCMAM
005	OA INAACKA	23:16	TTSCOFCM	TTSCOFBM	TTSCOFAM	BUSERM	UV18M	ECCM	FSMSTERM	
0x0D	OA_IMASK1	15:8								
		7:0							TXNERM	RXNERM

con	tinued										
Address	Name	Bit Pos.	7	6	5	4	3	2	1	0	
		31:24			ı	TIMESTAN	MPA[63:56]	J			
0.40	TTCCALL	23:16				TIMESTAN	ИРА[55:48]				
0x10	TTSCAH	15:8				TIMESTAN	ИРА[47:40]				
		7:0				TIMESTAN	MPA[39:32]				
		31:24				TIMESTAN	ИРА[31:24]				
0.44	TTCCAL	23:16				TIMESTAN	ИРА[23:16]				
0x11	TTSCAL	15:8				TIMESTA	MPA[15:8]				
		7:0				TIMESTA	MPA[7:0]				
		31:24				TIMESTAN	1PB[63:56]				
0.40	TTOODII	23:16				TIMESTAN	1PB[55:48]				
0x12	TTSCBH	15:8				TIMESTAN	1PB[47:40]				
		7:0				TIMESTAN	1PB[39:32]				
		31:24				TIMESTAN	MPB[31:24]				
		23:16				TIMESTAN	ИРВ[23:16]				
0x13	x13 TTSCBL	15:8					MPB[15:8]				
		7:0				TIMESTA	MPB[7:0]				
		31:24					1PC[63:56]				
		23:16	TIMESTAMPC[55:48]								
0x14	TTSCCH	15:8	TIMESTAMPC[47:40]								
		7:0	TIMESTAMPC[39:32]								
		31:24					/PC[31:24]				
		23:16	TIMESTAMPC[23:16]								
0x15	TTSCCL	15:8					MPC[15:8]				
		7:0	TIMESTAMPC[7:0]								
0x19											
	Reserved										
0xFEFF											
		15:8	SW_RESET	LOOPBACK	SPD_SEL[0]	AUTONEGEN	PD		REAUTONEG	DUPLEXMD	
0xFF00	BASIC_CONTROL	7:0		SPD_SEL[1]							
		15:8	100BT4A	100BTXFDA	100BTXHDA	10BTFDA	10BTHDA	100BT2FDA	100BT2HDA	EXTSTS	
0xFF01	BASIC_STATUS	7:0			AUTONEGC	RMTFLTD	AUTONEGA	LNKSTS	JABDET	EXTCAPA	
		15:8				OUI	[2:9]				
0xFF02	PHY_ID1	7:0					10:17]				
		15:8			OUI	18:23]	-		MODE	L[5:4]	
0xFF03	PHY_ID2	7:0	MODEL[3:0] REV[3:0]								
0xFF05											
	Reserved										
0xFF0C				NIT1.OI							
	MANDSTO	15:8	FNCT	N[1.0]							
0xFF0C 0xFF0D	MMDCTRL	15:8 7:0	FNCI	N[1.0]				DEVAD[4:0]			
	MMDCTRL		FNCI	N[1.0]		ADR_DA	TA[15:8]	DEVAD[4:0]			

Related Links

1.3. Register Bit Types

11.1.1 Identification Register

Name: OA_ID Address: 0x000

Bit	31	30	29	28	27	26	25	24
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
		MAJVE	R[3:0]			MINVE	R[3:0]	
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	1	0	0	0	1

Bits 7:4 - MAJVER[3:0] Major Version

This field contains the major version identifier of the OPEN Alliance 10BASE-T1x MAC-PHY Serial Interface specification supported by this device.

Note: This device is designed to conform to version 1.1 of the OPEN Alliance specification.

Bits 3:0 - MINVER[3:0] Minor Version

This field contains the minor version identifier of the OPEN Alliance 10BASE-T1x MAC-PHY Serial Interface specification supported by this device.

Note: This device is designed to conform to version 1.1 of the OPEN Alliance specification.

11.1.2 PHY Identification Register

Name: OA_PHYID Address: 0x001

Attention: This register is a reflection of the integrated PHY Clause 22 PHY_ID0 and PHY_ID1 registers.

Tip: The product ID and hardware revision number may be found in the Device Identification (11.6.6. DEVID) register.

Bit	31	30	29	28	27	26	25	24
				OUI[2	21:14]			
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				OUI[13:6]			
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	1	1	1
Bit	15	14	13	12	11	10	9	8
			OUI	[5:0]			MODE	L[5:4]
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	1	1	0	0	0	0	0	1
Bit	7	6	5	4	3	2	1	0
		MODE	L[3:0]			REVISIO	ON[3:0]	
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	1	0	1	1	0	0	1	1

Bits 31:10 - OUI[21:0] Organizationally Unique Identifier

This field contains the 19th through the 24th bits of the Organizationally Unique Identifier (OUI) as specified in IEEE Std 802.3 Clause 22. OUI = 00800Fh

Bits 9:4 - MODEL[5:0] Manufacturer's Model Number

Six-bit manufacturer's integrated PHY identification number.

Value	Description
011011	LAN8650/1 Integrated PHY

Bits 3:0 - REVISION[3:0] Manufacturer's Revision Number

Four-bit integrated PHY revision number.

Value	Description
0011	Integrated PHY Revision 3

11.1.3 Standard Capabilities

Name: OA_STDCAP Address: 0x0002

Bit	31	30	29	28	27	26	25	24
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
						TXFCSVC	IPRAC	DPRAC
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	1	0	1
Bit	7	6	5	4	3	2	1	0
	CTC	FTSC	AIDC	SEQC			MINBPS[2:0]	
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	1	1	1	0	0	1	0	1

Bit 10 - TXFCSVC Transmit Frame Check Sequence Validation Capability

This bit indicates the ability for the MAC to validate the frame check sequence appended by and received from the SPI host. Frames received from the SPI host with an invalid frame check sequence will not be transmitted to the network.

Note: Transmit frame sequence validation is supported as indicated by this bit reading as '1'.

Value	Description
0	Transmit frame check sequence validation is not supported
1	Transmit frame check sequence validation is supported

Bit 9 - IPRAC Indirect PHY Register access Capability

This bit indicates that the registers of the integrated PHY may be indirectly accessed using the optional OPEN Alliance MDIO Access 0-7 (MDIOACCn) registers.

Note: Indirect PHY register access via the optional OPEN Alliance MDIO Access 0-7 (MDIOACCn) is not supported and this bit always reads as '0'. PHY registers, however, may be accessed indirectly through the standard Clause 22 MMD Access Control (11.1.21. MMDCTRL) and MMD Access Address/Data (11.1.22. MMDAD) registers mapped directly into the SPI MMS0 register space.

Value	Description
0	Indirect PHY register access is not supported
1	Indirect PHY register access is supported

Bit 8 - DPRAC Direct PHY Register Access Capability

This bit indicates that the integrated PHY registers are directly accessible in SPI MMS0 (Clause 22), MMS2 (PCS), MMS3 (PMA/PMD), and MMS4 (PHY vendor specific) as specified by the OPEN Alliance. **Note:** PHY registers are directly accessible as indicated by this bit reading as '1'.

Value	Description
0	Direct PHY register access is not supported
1	Direct PHY register access is supported

Bit 7 - CTC Cut-through Capability

This bit indicates the support for cut-through transfer of frames through the device to/from the network.

Note: Frame cut-through is supported as indicated by this bit reading as '1'.

Value	Description
0	Cut-through frame transfer is not supported
1	Cut-through frame transfer is supported

Bit 6 - FTSC Frame Timestamp Capability

This bit indicates support for the capturing of timestamps on frame network ingress/egress.

Note: Frame ingress/egress timestamping is supported as indicated by this bit reading as '1'.

Value	Description
0	Timestamp capture on frame ingress/egress is not supported
1	Timestamp capture on frame ingress/egress is supported

Bit 5 - AIDC Address Increment Disable Capability

This bit indicates support for disabling the automatic post-increment of the register address for control command reads and writes. When supported, disabling of the automatic address post-increment is done through the Automatic Increment Disable (AID) bit in the control command header.

Note: The register address auto-increment may be disabled as indicated by this bit reading as '1'.

Value	Description
0	Control command address post-increment disable is not supported
1	Control command address post-increment disable is supported

Bit 4 - SEQC Transmit Data Block Sequence and Retry Capability

This bit indicates support for monitoring of the transmit data block header Sequence (SEQ) bit as sent by the host MCU.

Note: Transmit data block header Sequence bit (SEQ) is not supported as indicated by this bit reading as '0'.

Value	Description
0	Transmit data block header sequence monitoring is not supported
1	Transmit data block header sequence monitoring is supported

Bits 2:0 - MINBPS[2:0] Minimum Block Payload Size Capability

This field indicates the minimum supported data block payload size. The minimum supported data payload size is 2^N where N is the value of this bitfield.

Note: The minimum supported data payload size is 32 bytes as indicated by this field reading as '101'.

Note: This field is referred to as the Minimum Chunk Payload Size Capability (MINCPS) in the OPEN Alliance 10BASE-T1x MAC-PHY Serial Interface specification.

Value	Description
011	Minimum supported data payload size is 8 bytes
100	Minimum supported data payload size is 16 bytes
101	Minimum supported data payload size is 32 bytes
110	Minimum supported data payload size is 64 bytes

11.1.4 Reset Control and Status Register

Name: OA_RESET Address: 0x03

Bit	31	30	29	28	27	26	25	24
Access	RO							
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
Access	RO							
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
Access	RO							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
								SWRESET
Access	RO	R/W SC						
Reset	0	0	0	0	0	0	0	0

Bit 0 - SWRESET Software Reset

Writing a '1' to this bit will fully reset the device including the integrated PHY. When set, the reset will not occur until the CS_N pin has been deasserted high following the SPI transaction performing the write.

Note: This bit is self clearing upon reset of the device.

Value	Description
0	Normal operation
1	Device performs a reset

11.1.5 Configuration 0 Register

Name: OA_CONFIG0

Address: 0x004

Bit	31	30	29	28	27	26	25	24
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
	SYNC	TXFCSVE	RFA	[1:0]	TXCTHR	ESH[1:0]	TXCTE	RXCTE
Access	R/W1S	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	FTSE	FTSS	PROTE	SEQE			BPS[2:0]	
Access	R/W	R/W	R/W	RO	RO	R/W	R/W	R/W
Reset	0	0	0	0	0	1	1	0

Bit 15 - SYNC Configuration Synchronization

Once the device has been configured and is ready for Ethernet frames to be transferred between the network and SPI, the host MCU sets this bit to a '1'. This bit is reflected in the data footer SYNC bit.

Note: Once set, this bit may only be cleared by a reset of the device.

Value	Description
0	Device has not been configured and transfer of Ethernet frames is not permitted
1	Device has been configured and transfer of Ethernet frames may occur

Bit 14 - TXFCSVE Transmit Frame Check Sequence Validation Enable

When this bit is set, the MAC will interpret the final four bytes of frames received from the SPI host as an Ethernet frame check sequence. The MAC will validate the received frame to verify correct reception via SPI. Should an error be detected in the frame received from the host over SPI, the device will drop the frame and not transmit it onto the network.

Note: When enabling this feature, the SPI host must pad the frame to the minimum size and append the calculated 32-bit frame check sequence.

Value	Description
0	Transmit frame check sequence validation is not performed. The internal MAC will pad frames received from the host to the minimum packet size and append the correct frame check sequence prior to transmitting the packet onto the network.
1	Transmit frame check sequence validation is performed. The SPI host must pad all frames to the minimum packet size and append the correct frame check sequence. The internal MAC will validate the frame received from the host before transmitting it onto the network.

Bits 13:12 - RFA[1:0] Receive Frame Alignment

This field configures the alignment of receive frames within the receive data blocks. When this field is '00', receive Ethernet frames may begin at any word of any receive SPI data block payload.

When this field is '01', the start of all receive Ethernet frames will be output to the SPI aligned to the beginning of *any* receive data block payload with a Start Word Offset (SWO) of zero.

When this field is configured to '10', the start of all receive Ethernet frames will be output to the SPI beginning with the first receive data block payload following CS_N assertion. The Start Word Offset (SWO) will always be zero. Only one frame may be received per assertion of CS_N.

Note: Writing this field to '11' is invalid and will result in undefined operation.

Value	Description
00	Receive Ethernet frames may begin at any word of any receive data block. (Default)
01	Zero-Align Receive Frame Enable (ZARFE)
	Receive Ethernet frames will begin only at the first word of the receive data payload in any data block.
10	CS_N Align Receive Frame Enable (CSARFE)
	Receive Ethernet frames only begin in the first word of the first receive data block payload following assertion of CS_N
11	Invalid

Bits 11:10 - TXCTHRESH[1:0] Transmit Credit Threshold

This field configures the minimum number of transmit credits (TXC) of free buffers that must be available within the device before IRQ_N will be asserted. This guarantees a minimum number of Ethernet frame data blocks the SPI host may send to the device in a burst.

Value	Description
00	IRQ_N will be asserted when enough buffer space is available for at least 1 data block
01	IRQ_N will be asserted when enough buffer space is available for at least 4 data blocks
10	IRQ_N will be asserted when enough buffer space is available for at least 8 data blocks
11	IRQ_N will be asserted when enough buffer space is available for at least 16 data blocks

Bit 9 - TXCTE Transmit Cut-Through Enable

When set, this bit will enable the cut-through mode of egress frame transfer from the SPI to the network.

Value	Description
0	Transmit frame cut-through is disabled
1	Transmit frame cut-through is enabled

Bit 8 - RXCTE Receive Cut-Through Enable

When set, this bit will enable the cut-through mode of ingress frame transfer from the network to the SPI.

Value	Description
0	Receive frame cut-through is disabled
1	Receive frame cut-through is enabled

Bit 7 - FTSE Frame Timestamp Enable

When set, this bit enables the capturing of frame ingress/egress timestamps.

			_		 •	
Value	Description					
0	Frame ingress/egre	ss timestan	nping is	disabled		
1	Frame ingress/egre	ss timestan	nping is	enabled		

Bit 6 - FTSS Frame Timestamp Select

When frame timestamping is enabled (see FTSE), this bit selects the size and format of the timestamps added to the beginning of ingress frames and captured on request of egress frames.

	1	0 -	0	 - 1 0 -	
Value	Description				
0	32-bit timestamps				
1	64-bit timestamps				

Bit 5 - PROTE Control Data Read/Write Protection Enable

When set, this bit will enable the protection of control command register data against bit errors during transfer over the SPI.

Note: Control data read/write protection is disabled by default. Therefore, to enable control data read/write protection, this field must be initially written without write protection.

Value	Description
0	Control data read/write protection is disabled
1	Control data read/write protection is enabled

Bit 4 – SEQE Transmit data block header Sequence bit support Enable

If supported, setting this bit would enable the MAC-PHY monitoring of the Sequence (SEQ) bit sent by the SPI host in the transmit data block header.

Note: This feature is not supported. This bit is read-only and cannot be set.

Value	Description
0	Transmit data block header Sequence bit monitoring is disabled.
1	Transmit data block header Sequence bit monitoring is enabled. (Not supported)

Bits 2:0 - BPS[2:0] Block Payload Size

This field configures the receive and transmit data block payload size. The data payload size is configured to 2^N where N is the value of this bitfield.

Important: This field shall be changed prior to setting the Configuration Synchronization (SYNC) bit in this register enabling Ethernet packet transfer.

Important: When changing this field, the Buffer Size (BUFSZ) field in the Queue Transmit Configuration (QTXCFG) and Queue Receive Configuration (QRXCFG) must also be changed.

Note: This field is referred to as the *Chunk* Payload Size Capability (CPS) in the OPEN Alliance 10BASE-T1x MAC-PHY Serial Interface specification.

Value	Description
101	32 byte data block payload size
110	64 byte data block payload size (default)
others	Reserved

11.1.6 Status O Register

Name: OA_STATUS0

Address: 0x008

Bit	31	30	29	28	27	26	25	24
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				CPDE	TXFCSE	TTSCAC	TTSCAB	TTSCAA
Access	RO	RO	RO	R/W1C	R/W1C	R/W1C	R/W1C	R/W1C
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	PHYINT	RESETC	HDRE	LOFE	RXBOE	TXBUE	TXBOE	TXPE
Access	RO	R/W1C	R/W1C	R/W1C	R/W1C	R/W1C	R/W1C	R/W1C
Reset	0	0	0	0	0	0	0	0

Bit 12 - CPDE Control Data Protection Error

When control register data protection is enabled (see PROTE), this bit is set when a bit error has been detected in a control command received from the SPI host.

20011 40	received in a control command received from the 51 most.			
Value	Description			
0	A control command data error has not been detected			
1	A control command data error has been detected			

Bit 11 - TXFCSE Transmit Frame Check Sequence Error

When transmit frame check sequence validation is enabled (see TXFCSVE), this bit will be set when the MAC-PHY receives an Ethernet frame from the SPI host with an invalid frame check sequence.

Value	Description
0	Transmit frame check sequence error has not been detected
1	Transmit frame check sequence error has been detected

Bit 10 – TTSCAC Transmit Timestamp Capture Available C

This bit is set when a frame has been transmitted to the network and a timestamp has been captured in the Transmit Timestamp Capture C (TTSCC) register and is ready for reading.

Value	Description		
Timestamp has not been captured into the Transmit Timestamp Capture C (TTSCC) register			
1 Timestamp has been captured into the Transmit Timestamp Capture C (TTSCC) register			

Bit 9 - TTSCAB Transmit Timestamp Capture Available B

This bit is set when a frame has been transmitted to the network and a timestamp has been captured in the Transmit Timestamp Capture B (TTSCB) register and is ready for reading.

Value	Description
0	Timestamp has not been captured into the Transmit Timestamp Capture B (TTSCB) register
1	Timestamp has been captured into the Transmit Timestamp Capture B (TTSCB) register

Bit 8 - TTSCAA Transmit Timestamp Capture Available A

This bit is set when a frame has been transmitted to the network and a timestamp has been captured in the Transmit Timestamp Capture A (TTSCA) register and is ready for reading.

Value	Description	
0	Timestamp has not been captured into the Transmit Timestamp Capture A (TTSCA) register	
Timestamp has been captured into the Transmit Timestamp Capture A (TTSCA) register		

Bit 7 - PHYINT PHY Interrupt

This bit is set when the integrated PHY has signaled an interrupt service request. The host must read the PHY status registers to determine the source of the PHY interrupt.

Note: This bit is cleared by clearing the underlying PHY interrupt source(s).

Value	Description
0	PHY interrupt has not been detected
1	PHY interrupt has been detected

Bit 6 - RESETC Reset Complete

This bit is set upon a reset of the device.

Value	Description
0	Device has not been reset (normal operation)
1	Device has been reset and requires configuration

Bit 5 - HDRE Header Error Status

This bit is set when a header was received which failed the parity check.

Value	Description
0	No header error detected
1	Header error has occured

Bit 4 - LOFE Loss of Framing Error Status

This bit is set when an early deassertion of CS_N has been detected and the MAC-PHY has lost transaction framing with the host.

Value	Description
0	Loss of framing error has not been detected
1	Loss of framing error has been detected

Bit 3 - RXBOE Receive Buffer Overflow Error Status

This bit is set when received data from the network has overflowed the internal receive buffer and Ethernet frame data has been lost.

Value	Description
0	Receive buffer overflow condition has not been detected
1	Receive buffer overflow condition has been detected

Bit 2 - TXBUE Transmit Buffer Underflow Error Status

This bit is set when transmit data from the SPI host has under-flowed the internal transmit buffer while the MAC was transmitting the Ethernet frame data to the network in transmit cut-through operation.

Value	Description		
0	Transmit buffer underflow condition has not been detected		
1	Transmit buffer underflow condition has been detected		

Bit 1 – TXBOE Transmit Buffer Overflow Error Status

This bit is set when transmit Ethernet frame data from the SPI host has over-flowed the internal transmit buffers.

Value	Description
0	Transmit buffer overflow condition has not been detected
1	Transmit buffer overflow condition has been detected

Bit 0 - TXPE Transmit Protocol Error Status

This bit is set when a transmit data protocol error has been detected.

Value	Description
0	Transmit protocol error has not been detected
1	Transmit protocol error has been detected

11.1.7 Status 1 Register

Name: OA_STATUS1

Address: 0x009

This register contains vendor specific status.

Bit	31	30	29	28	27	26	25	24
				SEV		TTSCMC	TTSCMB	TTSCMA
Access	RO	RO	RO	RO	RO	R/W1C	R/W1C	R/W1C
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
	TTSCOFC	TTSCOFB	TTSCOFA	BUSER	UV18	ECC	FSMSTER	
Access	R/W1C	R/W1C	R/W1C	R/W1C	R/W1C	R/W1C	R/W1C	RO
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
							TXNER	RXNER
Access	RO	RO	RO	RO	RO	RO	R/W1C	R/W1C
Reset	0	0	0	0	0	0	0	0

Bit 28 - SEV Synchronization Event

This bit is set when any of the bits within the Synchronization Event Status (SEVSTS) register are set and the associated bit is not disabled in the Synchronization Event Interrupt Mask (SEVIM) regsiter. **Note:** This bit is cleared by reading the Synchronization Event Status Register (SEVSTS).

Value	Description
0	At least one enabled bit is set in the SEVSTS register
1	No enabled bits are set in the SEVSTS register

Bit 26 - TTSCMC Transmit Timestamp Capture Missed C

This bit is set when a requested timestamp was requested for a transmit frame into Transmit Timestamp Capture C (TTSCC), however, the transmit event was missed. This may be due to failing the transmit packet pattern match, if enabled.

Value	Description
0	No error.
1	Requested frame timestamp capture C was missed

Bit 25 - TTSCMB Transmit Timestamp Capture Missed B

This bit is set when a requested timestamp was requested for a transmit frame into Transmit Timestamp Capture B (TTSCB), however, the transmit event was missed. This may be due to failing the transmit packet pattern match, if enabled.

Value	Description
0	No error.
1	Requested frame timestamp capture B was missed

Bit 24 - TTSCMA Transmit Timestamp Capture Missed A

This bit is set when a requested timestamp was requested for a transmit frame into Transmit Timestamp Capture A (TTSCA), however, the transmit event was missed. This may be due to failing the transmit packet pattern match, if enabled.

Value	Description
0	No error.
1	Requested frame timestamp capture A was missed

Bit 23 - TTSCOFC Transmit Timestamp Capture Overflow C

This bit is set when a requested timestamp was requested for a transmit frame into Transmit Timestamp Capture C (TTSCC), however, the previous captured timestamp stored in TTSCC has not been read yet. The timestamp stored in TTSCC is not overwritten, and the new transmit packet timestamp will not be captured.

Value	Description
0	No error.
1	Requested frame timestamp capture C overflowed

Bit 22 - TTSCOFB Transmit Timestamp Capture Overflow B

This bit is set when a requested timestamp was requested for a transmit frame into Transmit Timestamp Capture B (TTSCB), however, the previous captured timestamp stored in TTSCB has not been read yet. The timestamp stored in TTSCB is not overwritten, and the new transmit packet timestamp will not be captured.

Value	Description
0	No error.
1	Requested frame timestamp capture B overflowed

Bit 21 - TTSCOFA Transmit Timestamp Capture Overflow A

This bit is set when a requested timestamp was requested for a transmit frame into Transmit Timestamp Capture A (TTSCA), however, the previous captured timestamp stored in TTSCA has not been read yet. The timestamp stored in TTSCA is not overwritten, and the new transmit packet timestamp will not be captured.

Value	Description
0	No error.
1	Requested frame timestamp capture A overflowed

Bit 20 - BUSER Internal Bus Error

This bit is set when an internal bus error has been detected. This may occur due to a bus parity error or uncorrectable SRAM error. When this error occurs, the host controller must perform a hardware or software reset of the device.

Value	Description
0	No internal bus error detected
1	Internal bus error detected

Bit 19 – UV18 1.8V supply Under-Voltage Status

Set when an under-voltage condition has been detected on the 1.8V supply.

Value	Description
0	1.8V supply under-voltage condition has not been detected
1	1.8V supply under-voltage condition has occurred

Bit 18 - ECC SRAM ECC Error Status

Set when an SRAM ECC error has been detected.

Value	Description
0	No SRAM ECC error detected
1	An SRAM ECC error has occurred

Bit 17 - FSMSTER FSM State Error Status

This bit is set when an internal state machine error has been detected. This may occur due to a random failure that causes a state machine to transition into an unexpected or invalid state. When this error occurs, the host controller must perform a hardware or software reset of the device.

V	'alue	Description
)	No internal state machine errors detected
	L	Internal state machine error has occurred

Bit 1 - TXNER Transmit Non-Recoverable Error Status

This bit is set when an internal non-recoverable transmit error has been detected. When this error occurs, the host controller must perform a hardware or software reset of the device.

Value	Description
0	No transmit non-recoverable errors
1	Transmit non-recoverable error has occurred

Bit 0 - RXNER Receive Non-Recoverable Error Status

This bit is set when an internal non-recoverable receive error has been detected. When this error occurs, the host controller must perform a hardware or software reset of the device.

Value	Description
0	No receive non-recoverable errors
1	Receive non-recoverable error has occurred

11.1.8 Buffer Status Register

Name: OA_BUFSTS Address: 0x000B

Internal SPI<->MAC Transmit and Receive Buffer Status

Bit	31	30	29	28	27	26	25	24
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				TXC	[7:0]			
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	1	1	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				RBA	[7:0]			
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0

Bits 15:8 - TXC[7:0] Transmit Credits Available

This field contains the number of Ethernet frame segments that the host MCU can write in a single burst without causing a Transmit Buffer Overflow Error.

Note: This field is saturated to five bits (0x1F) and sent over SPI to the host MCU within the TXC field of every receive data footer.

Value	Description
≥0x31	Not supported
0x30	The host MCU may write up to 48 segments of Ethernet frame data without overflow.
0x2F	The host MCU may write up to 47 segments of Ethernet frame data without overflow.
0x01	The host MCU may write 1 segments of Ethernet frame data without overflow.
0x00	The host MCU cannot write any segments of Ethernet frame data without causing an overflow error .

Bits 7:0 - RBA[7:0] Receive Blocks Available

This field contains the number of receive data blocks (segments) of Ethernet frame data that is available to the host MCU for reading. If the MCU host reads more data blocks than is available, either empty data blocks with the footer Data Valid flag set to zero or additional frame data may be sent to the host if the MAC-PHY has received data from the network since the beginning of the frame data transaction burst.

Note: This field is saturated to five bits (0x1F) and sent over SPI to the host within the RBA field of every receive data footer.

Value	Description
≥0x31	Not supported
0x30	At least 48 blocks of Ethernet frame data are available for reading.
0x2F	47 blocks of Ethernet frame data are available for reading.
0x01	One block of Ethernet frame data is available for reading.

ValueDescription0x00There is no Ethernet frame data available for reading.

11.1.9 Interrupt Mask 0 Register

Name: OA_IMASK0

Address: 0x00C

Bit	31	30	29	28	27	26	25	24
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				CPDEM	TXFCSEM	TTSCACM	TTSCABM	TTSCAAM
Access	RO	RO	RO	R/W	R/W	R/W	R/W	R/W
Reset	0	0	1	1	1	1	1	1
Bit	7	6	5	4	3	2	1	0
	PHYINTM	RESETCM	HDREM	LOFEM	RXBOEM	TXBUEM	TXBOEM	TXPEM
Access	R/W	RO	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	0	1	1	1	1	1	1

Bit 12 - CPDEM Control Data Protection Error Interrupt Mask

When clear, this bit will enable the assertion of the IRQ_N pin when the Control Data Protection Error (CPDE) status bit is set in the Status 0 register.

	- 2 = 7 5 to to 5 5 to 1.5 5 to 1.1 to 5 to 6 to 5 to 7		
Value	Description		
0	Control data protection error status interrupt enabled		
1	Control data protection error status interrupt disabled		

Bit 11 - TXFCSEM Transmit Frame Check Sequence Error Interrupt Mask

When clear, this bit will enable the assertion of the IRQ_N pin when the Transmit Frame Check Sequence Error (TXFCSE) status bit is set in the Status 0 register.

Value	Description
0	Transmit frame check sequence error status interrupt enabled
1	Transmit frame check sequence error status interrupt disabled

Bit 10 - TTSCACM Transmit Timestamp Capture Available C Interrupt Mask

When clear, this bit will enable the assertion of the IRQ_N pin when the Transmit Timestamp Capture Available C (TTSCAC) status bit is set in the Status 0 register.

Value	Description		
0	Transmit timestamp capture available C status interrupt enabled		
1	Transmit timestamp capture available C status interrupt disabled		

Bit 9 - TTSCABM Transmit Timestamp Capture Available B Interrupt Mask

When clear, this bit will enable the assertion of the IRQ_N pin when the Transmit Timestamp Capture Available B (TTSCAB) status bit is set in the Status 0 register.

Value	Description
0	Transmit timestamp capture available B status interrupt enabled
1	Transmit timestamp capture available B status interrupt disabled

Bit 8 - TTSCAAM Transmit Timestamp Capture Available A Interrupt Mask

When clear, this bit will enable the assertion of the IRQ_N pin when the Transmit Timestamp Capture Available A (TTSCAA) status bit is set in the Status 0 register.

Value	Description
0	Transmit timestamp capture available A status interrupt enabled
1	Transmit timestamp capture available A status interrupt disabled

Bit 7 - PHYINTM PHY Interrupt Mask

When clear, this bit will enable the assertion of the IRQ_N pin when the PHY Interrupt (PHYINT) status bit is set in the Status 0 register.

Value	Description
0	PHY status interrupt enabled
1	PHY status interrupt disabled

Bit 6 - RESETCM Reset Complete Interrupt Mask

When clear, this bit will enable the assertion of the IRQ_N pin when the Reset Complete (RESETC) status bit is set in the Status 0 register.

Note: The Reset Complete interrupt cannot be disabled. A Reset will always cause the IRQ_N pin to be asserted upon setting of the Reset Complete (RESETC) status bit in the Status 0 register.

Value	Description
0	Reset complete status interrupt enabled
1	Invalid state (cannot be written)

Bit 5 – HDREM Header Error Interrupt Mask

When clear, this bit will enable the assertion of the IRQ_N pin when the Header Error (HDRE) status bit is set in the Status 0 register.

Value	Description
0	Header error status interrupt enabled
1	Header error status interrupt disabled

Bit 4 - LOFEM Loss of Framing Error Interrupt Mask

When clear, this bit will enable the assertion of the IRQ_N pin when the Loss of Framing Error (LOFE) status bit is set in the Status 0 register.

Value	Description
0	Loss of framing error status interrupt enabled
1	Loss of framing error status interrupt disabled

Bit 3 - RXBOEM Receive Buffer Overflow Error Interrupt Mask

When clear, this bit will enable the assertion of the IRQ_N pin when the Receive Buffer Overflow Error (RXBOE) status bit is set in the Status 0 register.

Value	Description
0	Receive buffer overflow status interrupt enabled
1	Receive buffer overflow status interrupt disabled

Bit 2 - TXBUEM Transmit Buffer Underflow Error Interrupt Mask

When clear, this bit will enable the assertion of the IRQ_N pin when the Transmit Buffer Underflow Error (TXBUE) status bit is set in the Status 0 register.

Value	Description
0	Transmit buffer underflow status interrupt enabled
1	Transmit buffer underflow status interrupt disabled

Bit 1 – TXBOEM Transmit Buffer Overflow Error Interrupt Mask

When clear, this bit will enable the assertion of the IRQ_N pin when the Transmit Buffer Overflow Error (TXBOE) status bit is set in the Status 0 register.

Value	Description
0	Transmit buffer overflow status interrupt enabled

Value	Description
1	Transmit buffer overflow status interrupt disabled

Bit 0 - TXPEM Transmit Protocol Error Interrupt Mask

When clear, this bit will enable the assertion of the IRQ_N pin when the Transmit Protocol Error (TXPE) status bit is set in the Status 0 register.

Value	Description
0	Transmit protocol error status interrupt enabled
1	Transmit protocol error status interrupt disabled

11.1.10 Interrupt Mask 1 Register

Name: OA_IMASK1 Address: 0x00D

This register contains vendor specific status interrupt masks.

Bit	31	30	29	28	27	26	25	24
				SEVM		TTSCMCM	TTSCMBM	TTSCMAM
Access	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	1	1	1	1	1	1
Bit	23	22	21	20	19	18	17	16
	TTSCOFCM	TTSCOFBM	TTSCOFAM	BUSERM	UV18M	ECCM	FSMSTERM	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	RO
Reset	1	1	1	1	1	1	1	0
Bit	15	14	13	12	11	10	9	8
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
							TXNERM	RXNERM
Access	RO	RO	RO	RO	RO	RO	R/W	R/W
Reset	0	0	0	0	0	0	1	1

Bit 28 - SEVM Synchronization Event Interrupt Mask

When clear, this bit will enable the assertion of the IRQ_N pin when the Synchronization Event status bit is set in the Status 1 register.

Value	Description
0	Synchronization event interrupt enabled
1	Synchronization event interrupt disabled

Bit 26 - TTSCMCM Transmit Timestamp Capture Missed C Interrupt Mask

When clear, this bit will enable the assertion of the IRQ_N pin when the Transmit Timestamp Capture Missed C (TTSCMC) status bit is set in the Status 1 register.

Value	Description	
0	Transmit Timestamp Capture Missed C interrupt enabled	
1	Transmit Timestamp Capture Missed C interrupt disabled	

Bit 25 – TTSCMBM Transmit Timestamp Capture Missed B Interrupt Mask

When clear, this bit will enable the assertion of the IRQ_N pin when the Transmit Timestamp Capture Missed B (TTSCMB) status bit is set in the Status 1 register.

Value	Description
0	Transmit Timestamp Capture Missed B interrupt enabled
1	Transmit Timestamp Capture Missed B interrupt disabled

Bit 24 - TTSCMAM Transmit Timestamp Capture Missed A Interrupt Mask

When clear, this bit will enable the assertion of the IRQ_N pin when the Transmit Timestamp Capture Missed A (TTSCMA) status bit is set in the Status 1 register.

Value	Description
0	Transmit Timestamp Capture Missed A interrupt enabled
1	Transmit Timestamp Capture Missed A interrupt disabled

Bit 23 - TTSCOFCM Transmit Timestamp Capture Overflow C Interrupt Mask

When clear, this bit will enable the assertion of the IRQ_N pin when the Transmit Timestamp Capture Overflow C (TTSCMC) status bit is set in the Status 1 register.

Value	Description
0	Transmit Timestamp Capture Overflow C interrupt enabled
1	Transmit Timestamp Capture Overflow C interrupt disabled

Bit 22 - TTSCOFBM Transmit Timestamp Capture Overflow B Interrupt Mask

When clear, this bit will enable the assertion of the IRQ_N pin when the Transmit Timestamp Capture Overflow B (TTSCMB) status bit is set in the Status 1 register.

Value	Description
0	Transmit Timestamp Capture Overflow B interrupt enabled
1	Transmit Timestamp Capture Overflow B interrupt disabled

Bit 21 - TTSCOFAM Transmit Timestamp Capture Overflow A Interrupt Mask

When clear, this bit will enable the assertion of the IRQ_N pin when the Transmit Timestamp Capture Overflow A (TTSCMA) status bit is set in the Status 1 register.

Value	Description
0	Transmit Timestamp Capture Overflow A interrupt enabled
1	Transmit Timestamp Capture Overflow A interrupt disabled

Bit 20 - BUSERM Internal Bus Error Interrupt Mask

When clear, this bit will enable the assertion of the IRQ_N pin when the internal Bus Error (BUSER) status bit is set in the Status 1 register.

Value	Description
0	Internal bus error interrupt enabled
1	Internal bus error interrupt disabled

Bit 19 – UV18M 1.8V supply Under-Voltage Interrupt Mask

When clear, this bit will enable the assertion of the IRQ_N pin when the 1.8V supply Under-voltage (UV18) status bit is set in the Status 1 register.

Value	Description
0	1.8V supply under-voltage interrupt enabled
1	1.8V supply under-voltage interrupt disabled

Bit 18 - ECCM SRAM ECC Error Interrupt Mask

When clear, this bit will enable the assertion of the IRQ_N pin when the SRAM ECC Error (ECC) status bit is set in the Status 1 register.

210 13 30	in the status i replacer.
Value	Description
0	SRAM ECC error interrupt enabled
1	SRAM ECC error interrupt disabled

Bit 17 - FSMSTERM FSM State Error Interrupt Mask

When clear, this bit will enable the assertion of the IRQ_N pin when the FSM State Error (FSMSTER) status bit is set in the Status 1 register.

Value	Description
0	FSM state error interrupt enabled
1	FSM state error interrupt disabled

Bit 1 – TXNERM Transmit Non-Recoverable Error Interrupt Mask

When clear, this bit will enable the assertion of the IRQ_N pin when the Transmit Non-Recoverable Error (TXNER) status bit is set in the Status 1 register.

Value	Description
0	Transmit non-recoverable error interrupt enabled
1	Transmit non-recoverable error interrupt disabled

Bit 0 - RXNERM Receive Non-Recoverable Error Interrupt Mask

When clear, this bit will enable the assertion of the IRQ_N pin when the Receive Non-Recoverable Error (RXNER) status bit is set in the Status 1 register.

Value	Description
0	Receive non-recoverable error interrupt enabled
1	Receive non-recoverable error interrupt disabled

11.1.11 Transmit Timestamp Capture A (High)

Name: TTSCAH Address: 0x0010

Bit	31	30	29	28	27	26	25	24		
	TIMESTAMPA[63:56]									
Access	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0		
Bit	23	22	21	20	19	18	17	16		
				TIMESTAN	1PA[55:48]					
Access	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0		
Bit	15	14	13	12	11	10	9	8		
				TIMESTAN	1PA[47:40]					
Access	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				TIMESTAN	1PA[39:32]					
Access	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0		

Bits 31:0 - TIMESTAMPA[63:32] Captured Egress Timestamp

This field contains the 32 most significant bits of the 64-bit captured egress frame timestamp. The format of the timestamp is determined by the state of the Frame Timestamp Select (FTSS) bit in the OPEN Alliance Configuration 0 (11.1.5. OA_CONFIGO) register.

11.1.12 Transmit Timestamp Capture A (Low)

Name: TTSCAL Address: 0x0011

Bit	31	30	29	28	27	26	25	24		
	TIMESTAMPA[31:24]									
Access	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0		
Bit	23	22	21	20	19	18	17	16		
				TIMESTAM	1PA[23:16]					
Access	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0		
Bit	15	14	13	12	11	10	9	8		
				TIMESTAN	ИРА[15:8]					
Access	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				TIMESTA	MPA[7:0]					
Access	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0		

Bits 31:0 - TIMESTAMPA[31:0] Captured Egress Timestamp A

This field contains the 32 least significant bits of the 64-bit captured egress frame timestamp. The format of the timestamp is determined by the state of the Frame Timestamp Select (FTSS) bit in the OPEN Alliance Configuration 0 (11.1.5. OA_CONFIGO) register.

11.1.13 Transmit Timestamp Capture B (High)

Name: TTSCBH Address: 0x0012

Bit	31	30	29	28	27	26	25	24		
	TIMESTAMPB[63:56]									
Access	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0		
Bit	23	22	21	20	19	18	17	16		
				TIMESTAM	1PB[55:48]					
Access	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0		
Bit	15	14	13	12	11	10	9	8		
				TIMESTAN	1PB[47:40]					
Access	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				TIMESTAN	1PB[39:32]					
Access	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0		

Bits 31:0 - TIMESTAMPB[63:32] Captured Egress Timestamp B

This field contains the 32 most significant bits of the 64-bit captured egress frame timestamp. The format of the timestamp is determined by the state of the Frame Timestamp Select (FTSS) bit in the OPEN Alliance Configuration 0 (11.1.5. OA_CONFIGO) register.

11.1.14 Transmit Timestamp Capture B (Low)

Name: TTSCBL Address: 0x0013

Bit	31	30	29	28	27	26	25	24		
	TIMESTAMPB[31:24]									
Access	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0		
Bit _	23	22	21	20	19	18	17	16		
				TIMESTAN	1PB[23:16]					
Access	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0		
Bit _	15	14	13	12	11	10	9	8		
				TIMESTAN	MPB[15:8]					
Access	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0		
Bit _	7	6	5	4	3	2	1	0		
				TIMESTA	MPB[7:0]					
Access	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0		

Bits 31:0 - TIMESTAMPB[31:0] Captured Egress Timestamp B

This field contains the 32 least significant bits of the 64-bit captured egress frame timestamp. The format of the timestamp is determined by the state of the Frame Timestamp Select (FTSS) bit in the OPEN Alliance Configuration 0 (11.1.5. OA_CONFIGO) register.

11.1.15 Transmit Timestamp Capture C (High)

Name: TTSCCH Address: 0x0014

Bit	31	30	29	28	27	26	25	24		
	TIMESTAMPC[63:56]									
Access	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0		
Bit	23	22	21	20	19	18	17	16		
				TIMESTAM	1PC[55:48]					
Access	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0		
Bit	15	14	13	12	11	10	9	8		
				TIMESTAN	1PC[47:40]					
Access	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0		
Bit _	7	6	5	4	3	2	1	0		
				TIMESTAN	1PC[39:32]					
Access	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0		

Bits 31:0 - TIMESTAMPC[63:32] Captured Egress Timestamp C

This field contains the 32 most significant bits of the 64-bit captured egress frame timestamp. The format of the timestamp is determined by the state of the Frame Timestamp Select (FTSS) bit in the OPEN Alliance Configuration 0 (11.1.5. OA_CONFIGO) register.

11.1.16 Transmit Timestamp Capture C (Low)

Name: TTSCCL Address: 0x0015

Bit	31	30	29	28	27	26	25	24		
	TIMESTAMPC[31:24]									
Access	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0		
Bit	23	22	21	20	19	18	17	16		
				TIMESTAM	1PC[23:16]					
Access	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0		
Bit	15	14	13	12	11	10	9	8		
				TIMESTAN	MPC[15:8]					
Access	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				TIMESTA	MPC[7:0]					
Access	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0		

Bits 31:0 - TIMESTAMPC[31:0] Captured Egress Timestamp C

This field contains the 32 least significant bits of the 64-bit captured egress frame timestamp. The format of the timestamp is determined by the state of the Frame Timestamp Select (FTSS) bit in the OPEN Alliance Configuration 0 (11.1.5. OA_CONFIGO) register.

11.1.17 Basic Control

Name: BASIC_CONTROL

Address: 0xFF00

Clause 22 Basic Control Register

Bit	15	14	13	12	11	10	9	8
	SW_RESET	LOOPBACK	SPD_SEL[0]	AUTONEGEN	PD		REAUTONEG	DUPLEXMD
Access	R/W SC	R/W	RO	RO	R/W	R/W	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
		SPD_SEL[1]						
Access	R/W	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0

Bit 15 - SW_RESET PHY Soft Reset

Writing a '1' to this bit will initiate a software reset of the integrated PHY. A software reset will restore all integrated PHY registers to their default state, except for those fields identified as "NASR", Not Affected by Software Reset.

Note: This bit is self-clearing. When setting this bit, do not set other bits in this register.

Value	Description		
0	Normal operation		
1	integrated PHY software reset		

Bit 14 - LOOPBACK Near-End Loopback

When set, this bit enables a near-end loopback. When enabled, transmit data (TXD) pins from the MAC will be looped back onto the receive data (RXD) pins to the MAC. In this mode, no signal is transmitted onto the network media.

Important: PLCA must be disabled or configured as the PLCA Coordinator (Local ID = 0) when the near-end loopback mode is enabled.

Value	Description		
0	Normal operation		
1	Enable near-end loopback mode		

Bit 13 - SPD_SEL[0] PHY Speed Select

Together with SPD_SEL[1], sets the network communication speed.

Note: Only 10 Mbit/s is supported. This bit is always '0'.

Value	Description
00	10 Mbit/s
01	100 Mbit/s
10	1000 Mbit/s
11	Reserved

Bit 12 - AUTONEGEN Auto-Negotiation Enable

Note: Auto-negotiation is not supported. This bit is always '0'.

Value	Description
0	Disable auto-negotiate process
1	Enable auto-negotiate process

Bit 11 - PD Power Down

Setting this bit will power down the PMA transceiver leaving the remainder of the device functional. **Note:** This bit is the same as the Low Power Enable bit in the 10BASE-T1S PMA Control register.

Value	Description	
0	Normal operation	
1	PMA will be powered down	

Bit 9 - REAUTONEG Restart Auto-Negotiation

Note: Auto-negotiation is not supported. This bit is always '0'.

Value	Description			
0	Normal operation			
1	Restart auto-negotiate process			

Bit 8 - DUPLEXMD Duplex Mode

This bit configures the PHY for full-duplex or half-duplex network communication.

Note: Only half duplex operation is supported. This bit is always '0'.

Value	Description
0	Half duplex
1	Full duplex

Bit 6 - SPD_SEL[1] PHY Speed Select

See description for SPD_SEL[0] for details.

Note: Only 10 Mbit/s operation is supported. This bit is always '0'.

11.1.18 Basic Status

Name: BASIC_STATUS

Address: 0xFF01

Clause 22 Basic Status Register

Bit	15	14	13	12	11	10	9	8
	100BT4A	100BTXFDA	100BTXHDA	10BTFDA	10BTHDA	100BT2FDA	100BT2HDA	EXTSTS
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	1	0	0	0
Bit	7	6	5	4	3	2	1	0
			AUTONEGC	RMTFLTD	AUTONEGA	LNKSTS	JABDET	EXTCAPA
Access	RO	RO	RO	RO	RO	RO	RC	RO
Reset	0	0	0	0	0	1	0	1

Bit 15 - 100BT4A 100BASE-T4 Ability

Note: 100BASE-T4 operation is not supported. This bit is always '0'.

Value	Description
0	PHY not able to operate at 100BASE-T4
1	PHY able to operate at 100BASE-T4

Bit 14 - 100BTXFDA 100BASE-TX Full Duplex Ability

Note: 100BASE-TX full duplex operation is not supported. This bit is always '0'.

Value	Description
0	PHY not able to perform full duplex 100BASE-TX
1	PHY able to perform full duplex 100BASE-TX

Bit 13 - 100BTXHDA 100BASE-TX Half Duplex Ability

Note: 100BASE-TX half duplex operation is not supported. This bit is always '0'.

Value	Description
0	PHY not able to perform half duplex 100BASE-TX
1	PHY able to perform half duplex 100BASE-TX

Bit 12 - 10BTFDA 10BASE-T Full Duplex Ability

Note: Full duplex operation is not supported. This bit is always '0'.

Value	Description
0	PHY not able to operate at 10 Mbit/s in full duplex
1	PHY able to operate at 10 Mbit/s in full duplex

Bit 11 - 10BTHDA 10BASE-T Half Duplex Ability

Note: Half duplex operation is supported. This bit is always '1'.

Value	Description
0	PHY not able to operate at 10 Mbit/s in half duplex
1	PHY able to operate at 10 Mbit/s in half duplex

Bit 10 - 100BT2FDA 100BASE-T2 Full Duplex Ability

Note: 100BASE-T2 full duplex operation is not supported. This bit is always '0'.

Value	Description
0	PHY not able to operate at 100BASE-T2 in full duplex
1	PHY able to operate at 100BASE-T2 in full duplex

Bit 9 - 100BT2HDA 100BASE-T2 Half Duplex Ability

Note: 100BASE-T2 half duplex operation is not supported. This bit is always '0'.

Value	Description
0	PHY not able to operate at 100BASE-T2 in half duplex
1	PHY able to operate at 100BASE-T2 in half duplex

Bit 8 - EXTSTS Extended status information ability

Note: Extended status information is not available. This bit is always '0'.

Value	Description
0	No extended status information in register 0xFF0F
1	Extended status information in register 0xFF0F

Bit 5 - AUTONEGC Auto-Negotiation Complete

Note: Auto-negotiation is not supported. This bit is always '0'.

Value	Description
0	Auto-negotiation process has not completed
1	Auto-negotiation process has completed

Bit 4 - RMTFLTD Remote Fault Detection

Note: Remote fault detection is not supported. This bit is always '0'.

Value	Description
0	No remote fault condition detected
1	Remote fault condition detected

Bit 3 – AUTONEGA Auto-Negotiation Ability

Note: Auto-negotiation is not supported. This bit is always '0'.

Value	Description
0	PHY is not able to perform auto-negotiation
1	PHY is able to perform auto-negotiation

Bit 2 - LNKSTS Link Status

Note: Link status indication is not supported. This bit is always '1'.

Value	Description
0	Network link is down
1	Network link is up

Bit 1 - JABDET Jabber Detection Status

This bit is set on detection of a jabber condition.

This sie is see of a decection of a justice contained.					
Value	Description				
0	No jabber condition detected				
1	Jabber condition detected				

Bit 0 - EXTCAPA Extended Capabilities Ability

When this bit is clear, it indicates that only the basic capability registers BASIC_CONTROL and BASIC_STATUS are available. When set, then extended registers in the range of 0xFF02-0xFF0F are available in addition to the basic capability registers.

Note: Extended capabilities registers are supported. This bit is always '1'.

Value	Description
0	Extended capabilities registers between 0xFF02-0xFF0F are not supported. Only the basic capabilities registers BASIC_CONTROL and BASIC_STATUS registers are supported.
1	Extended capabilities registers between 0xFF02-0xFF0F are supported in addition to basic capabilities registers BASIC_CONTROL and BASIC_STATUS.

11.1.19 PHY Identifier 1 Register

Name: PHY_ID1 Address: 0xFF02

Bit	15	14	13	12	11	10	9	8	
	OUI[2:9]								
Access	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
	OUI[10:17]								
Access	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	1	1	1	

Bits 15:8 - OUI[2:9] Organizationally Unique Identifier

This field contains the 3rd through the 10th bits of the Organizationally Unique Identifier (OUI) as specified in IEEE Std 802.3 Clause 22. OUI = 00800Fh

Bits 7:0 – OUI[10:17] Organizationally Unique Identifier

This field contains the 11th through the 18th bits of the Organizationally Unique Identifier (OUI) as specified in IEEE Std 802.3 Clause 22. OUI = 00800Fh

11.1.20 PHY Identifier 2 Register

Name: PHY_ID2 Address: 0xFF03

This register contains the model number and hardware revision for the integrated PHY block only.

Bit	15	14	13	12	11	10	9	8
	OUI[18:23]						MODE	EL[5:4]
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	1	1	0	0	0	0	0	1
Bit	7	6	5	4	3	2	1	0
		MODE	L[3:0]			REV	[3:0]	
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	1	0	1	1	0	0	1	1

Bits 15:10 - OUI[18:23] Organizationally Unique Identifier

This field contains the 19th through the 24th bits of the Organizationally Unique Identifier (OUI) as specified in IEEE Std 802.3 Clause 22. OUI = 00800Fh

Bits 9:4 - MODEL[5:0] Manufacturer's Model Number

Six-bit manufacturer's integrated PHY identification number.

six sic manaractar of sinte-bracea i i i i acritimeation name of	
Value	Description
011011	LAN8650/1 Integrated PHY

Bits 3:0 - REV[3:0] Manufacturer's Revision Number

Four-bit integrated PHY revision number.

Value	Description
0011	Silicon revision 3

11.1.21 MMD Access Control Register

Name: MMDCTRL Address: 0xFF0D

Bit	15	14	13	12	11	10	9	8
	FNCT	N[1:0]						
Access	R/W	R/W	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
						DEVAD[4:0]		
Access	RO	RO	RO	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:14 - FNCTN[1:0] MMD Function

This field specifies the action to be performed when reading or writing the MMD Access Address/ Data register.

Value	Description
00	Address
01	Data - No post increment
10	Data - Post increment on reads and writes
11	Data - Post increment on writes only

Bits 4:0 - DEVAD[4:0] Device Address

Address of the MDIO Manageable Device to access.

Value	Description
00001	PMA/PMD
00011	PCS
11111	Vendor Specific 2
Others	Reserved - do not access

11.1.22 MMD Access Address/Data Register

Name: MMDAD Address: 0xFF0E

Bit	15	14	13	12	11	10	9	8
				ADR_DA	TA[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				ADR_DA	ATA[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - ADR_DATA[15:0] MMD Address / Data

Functionality depends on the MMD Function (FNCTN) bits in the MMD Access Control (MMDCTRL) register as specified in IEEE Std 802.3 Annex 22D:

- 00b = Writing this field sets the offset of the register within the MMD to access
- 01b, 10b, 11b = When written, the contents are written into the MMD register
- 01b, 10b, 11b = When read, the contents from the MMD register are returned

11.2 MAC Registers

The MAC registers are located within Memory Map Selector 1 (MMS1).

RESERVED address space must not be written except when specifically directed to by Microchip. Failure to heed this warning may result in adverse operation and unexpected results.

Refer to the Register Bit Types section for details on register bit attribute notation.

Address	Name	Bit Pos.	7	6	5	4	3	2	1	0	
		31:24									
		23:16									
0x00	NCR	15:8									
		7:0					TXEN	RXEN	LBL		
		31:24			RXBP			IRXFCS	EFRHD		
		23:16							RFCS	LFERD	
0x01	NCFGR	15:8								MAXFS	
		7:0	UNIHEN	MTIHEN	NBC	CAF		DNVLAN			
0x05											
	Reserved										
0x1F											
		31:24				ADDR	[31:24]				
0.20	LIDD	23:16					[23:16]				
0x20	HRB	15:8				ADDF	[15:8]				
		7:0				ADD					
		31:24					[31:24]				
021	LIDT	23:16					[23:16]				
0x21	HRT	15:8					[15:8]				
		7:0				ADD	R[7:0]				
		31:24					[31:24]				
	SAB1	23:16		ADDR[23:16]							
0x22		15:8				ADDF	[15:8]				
		7:0					R[7:0]				
		31:24									
022		23:16								FLTTYP	
0x23	SAT1	15:8				ADDR	[47:40]				
		7:0				ADDR	[39:32]				
		31:24				ADDR	[31:24]				
024	CADO	23:16				ADDR	[23:16]				
0x24	SAB2	15:8				ADDF	[15:8]				
		7:0				ADD	R[7:0]				
		31:24						M[5:0]			
0x25	SAT2	23:16								FLTTYP	
UXZS	3AIZ	15:8					[47:40]				
		7:0				ADDR	[39:32]				
		31:24					[31:24]				
0x26	SAB3	23:16					[23:16]				
UXZ6	SAB3	15:8					[15:8]				
		7:0				ADD	R[7:0]				
		31:24					FLTBI	M[5:0]			
0x27	SAT3	23:16								FLTTYP	
UXZ/	SAIS	15:8				ADDR	[47:40]				
		7:0				ADDR	[39:32]				
		31:24				ADDR	[31:24]				
0x28	SAB4	23:16				ADDR	[23:16]				
UXZ8	SAD4	15:8					[15:8]				
		7:0				ADD	R[7:0]				

	inued				
Address	Name	Bit Pos.	7 6	5 4 3 2	1 0
		31:24		FLTBM[5:0]	
0x29	SAT4	23:16			FLTTYP
UNZJ	3/114	15:8		ADDR[47:40]	
		7:0		ADDR[39:32]	
		31:24	ENID		
0x2A	TIDM1	23:16			
UXZA	HUMH	15:8		TID[15:8]	
		7:0		TID[7:0]	
		31:24	ENID		
020	TIDMO	23:16			
0x2B	TIDM2	15:8		TID[15:8]	
		7:0		TID[7:0]	
		31:24	ENID		
		23:16			
0x2C	TIDM3	15:8		TID[15:8]	
		7:0		TID[7:0]	
		31:24	ENID		
		23:16			
0x2D	TIDM4	15:8		TID[15:8]	
		7:0		TID[7:0]	
0x31	Reserved	,			
3,31	incoci ved	31:24		ADDR[31:24]	
		23:16		ADDR[23:16]	
0x32	SAMB1	15:8		ADDR[15:8]	
		7:0		ADDR[7:0]	
		31:24		ADDR[7.0]	
0x33	SAMT1	23:16			
		15:8		ADDR[47:40]	
0x37		7:0		ADDR[39:32]	
	Decembed				
 0v6F	Reserved				
0x6E		21.24		L COTIDITION	
		31:24		LSBTIR[7:0]	
0x6F	TISUBN	23:16		MCDTID145-01	
		15:8		MSBTIR[15:8]	
		7:0		MSBTIR[7:0]	
		31:24			
0x70	TSH	23:16			
		15:8		TCS[47:40]	
		7:0		TCS[39:32]	
		31:24		TCS[31:24]	
0x74	TSL	23:16		TCS[23:16]	
		15:8		TCS[15:8]	
		7:0		TCS[7:0]	
		31:24		TNS[29:24]	
0x75	TN	23:16		TNS[23:16]	
3.7.3	118	15:8		TNS[15:8]	
		7:0		TNS[7:0]	
		31:24	ADJ	ITDT[29:24]	
0x76	TA	23:16		ITDT[23:16]	
0.7.0	IA	15:8		ITDT[15:8]	
		7:0		ITDT[7:0]	
		31:24			
0.477	T 1	23:16			
0x77	TI	15:8			
		7:0		CNS[7:0]	
0x7B					
	Reserved				

contir	nued							
Address	Name	Bit Pos. 7	6 5	4	3	2	1	0
Addicss	Name	31:24	J J		3			
		23:16						
0x0200	BMGR_CTL	15:8						
		7:0	SNAPSTATS	CLRSTATS				
0x0204		7.0	SINAFSIAIS	CLRSTATS				
	Reserved							
 0x0207	Reserveu							
0.0207		31:24		DYCI	[7:0]			
		23:16			R[7:0]			
0x0208	STATS0	15:8			K[7:0]			
		7:0			K[7:0]			
		31:24			R[7:0]			
		23:16			VR[7:0]			
0x0209	STATS1	15:8			/R[7:0]			
		7:0		10010	/IC[7.0]			
		31:24						
		23:16						
0x020A	STATS2	15:8						
		7:0		ECCI	[7:0]			
		31:24			:[7:0] :NT[7:0]			
		23:16			INT[7:0] INT[7:0]			
0x020B	STATS3	15:8			INT[7:0] INT[7:0]			
		7:0			INT[7:0] INT[7:0]			
		31:24			:NT[7:0]			
		23:16			:NT[7:0]			
0x020C	STATS4	15:8			:NT[7:0]			
		7:0			:NT[7:0]			
		31:24			RX[7:0]			
	STATS5	23:16			RX[7:0]			
0x020D		15:8			([7:0]			
		7:0			([7:0] ([7:0]			
		31:24			31:24]			
		23:16			23:16]			
0x020E	STATS6	15:8			[15:8]			
		7:0			([7:0]			
		31:24			31:24]			
		23:16			23:16]			
0x020F	STATS7	15:8			15:8]			
		7:0			[7:0]			
		31:24			[,,,,]			
		23:16						
0x0210	STATS8	15:8						
		7:0		TXAI	E[7:0]			
		31:24			E[7:0]			
		23:16			R[7:0]			
0x0211	STATS9	15:8			R[7:0]			
		7:0		.,.50				
		31:24						
		23:16						
0x0212	STATS10	15:8						
		7:0		XCO	L[7:0]			
		31:24			31:24]			
		23:16			23:16]			
0x0213	STATS11	15:8			[15:8]			
		7:0			([7:0]			
		31:24			31:24]			
		23:16			23:16]			
0x0214	STATS12	23.10						
0x0214	STATS12	15:8		FTXI	15:8]			

Related Links

1.3. Register Bit Types

11.2.1 MAC Network Control Register

 Name:
 MAC_NCR

 Address:
 0x000

 Reset:
 0x00000000

Property: -

Important: Reserved fields must be written with their default value.

Bit	31	30	29	28	27	26	25	24
Access	RO	RO	RO	RO	RO	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
Access	R/W	R/W	R/W	R/W	R/W	WO	WO	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
Access	R/W	R/W	WO	WO	WO	WO	WO	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
					TXEN	RXEN	LBL	
Access	R/W	WO	WO	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 3 - TXEN Transmit Enable

Writing a '1' to this bit enables the MAC transmitter to send data.

Writing a '0' to this bit stops transmission immediately, the transmit pipeline is cleared.

		 <u> </u>	
Value	Description		
0	Transmit is disabled		
1	Transmit is enabled		

Bit 2 - RXEN Receive Enable

Writing a '1' to this bit enables the MAC to receive data.

Writing a '0' to this bit stops frame reception immediately, and the receive pipeline is cleared.

Value	Description
0	Receive is disabled
1	Receive is enabled

Bit 1 - LBL Loop Back Local

Writing '1' to this bit connects internal MII signals TXD[3:0] to RXD[3:0], TXEN to RXDV, and forces full duplex mode.

RXCK and TXCK to the internal PHY may malfunction as the MAC is switched into and out of internal loop back. It is important that receive and transmit circuits have already been disabled when making the switch into and out of internal loop back.

Register Descriptions

Value	Description
0	Loop back local is disabled
1	Loop back local is enabled

11.2.2 MAC Network Configuration Register

Name: MAC_NCFGR

Address: 0x001

Reset: 0x00080000 **Property:** Read/Write

Important: Reserved fields must be written with their default value.

Bit	31	30	29	28	27	26	25	24
			RXBP			IRXFCS	EFRHD	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit _	23	22	21	20	19	18	17	16
							RFCS	LFERD
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	1	0	0	0
Bit	15	14	13	12	11	10	9	8
								MAXFS
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	UNIHEN	MTIHEN	NBC	CAF		DNVLAN		
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 29 - RXBP Receive Bad Preamble

When written to '1', frames with non-standard preamble are not rejected.

Bit 26 - IRXFCS Ignore RX FCS

For normal operation this bit must be written to zero.

When this bit is written to '1', frames with FCS/CRC errors will not be rejected. FCS error statistics will still be collected for frames with bad FCS, and FCS status will be recorded in the DMA descriptor of the frame.

Bit 25 – EFRHD Enable Frames Received in half-duplex

Writing a '1' to this bit enables frames to be received in half-duplex mode while transmitting.

Bit 17 - RFCS Remove FCS

Writing this bit to '1' will cause received frames to be written to memory without their frame check sequence (last 4 bytes). The indicated frame length will be reduced by four bytes in this mode.

Bit 16 - LFERD Length Field Error Frame Discard

Writing a '1' to this bit discards frames with a measured length shorter than the extracted length field (as indicated by bytes 13 and 14 in a non-VLAN tagged frame). This only applies to frames with a length field less than 0x0600.

Bit 8 - MAXFS 1536 Maximum Frame Size

Writing a '1' to this bit increases the maximum accepted frame size to 1536 bytes in length. When written to '0', any frame above 1518 bytes in length is rejected.

Note: To receive maximum sized VLAN tagged frame, 1536 setting is needed.

Bit 7 - UNIHEN Unicast Hash Enable

When writing a '1' to this bit, unicast frames will be accepted when the 6-bit hash function of the destination address points to a bit that is set in the Hash Register.

Writing a '0' to this bit disables unicast hashing.

Bit 6 - MTIHEN Multicast Hash Enable

When writing a '1' to this bit, multicast frames will be accepted when the 6-bit hash function of the destination address points to a bit that is set in the Hash Register.

Writing a '0' to this bit disables multicast hashing.

Bit 5 - NBC No Broadcast

Writing a '1' to this bit will reject frames addressed to the broadcast address 0xFFFFFFFFFF (all '1'). Writing a '0' to this bit allows broadcasting to 0xFFFFFFFFF.

Bit 4 - CAF Copy All Frames

When writing a '1' to this bit, all valid frames will be accepted.

Bit 2 - DNVLAN Discard Non-VLAN Frames

Writing a '1' to this bit allows only VLAN-tagged frames to pass to the address matching logic. Writing a '0' to this bit allows both VLAN-tagged and untagged frames to pass to the address matching logic.

11.2.3 MAC Hash Register Bottom

 Name:
 MAC_HRB

 Address:
 0x020

 Reset:
 0x0000000

 Property:
 Read/Write

The unicast hash enable (UNIHEN) and the multicast hash enable (MITIHEN) bits in the Network Configuration Register (MAC_NCFGR) enable the reception of hash matched frames.

Bit	31	30	29	28	27	26	25	24
				ADDR	[31:24]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				ADDR	[23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				ADDR	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				ADDI	R[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 31:0 - ADDR[31:0] Hash Address

The first 32 bits of the Hash Address Register.

11.2.4 MAC Hash Register Top

 Name:
 MAC_HRT

 Address:
 0x021

 Reset:
 0x0000000

 Property:
 Read/Write

The Unicast Hash Enable (UNIHEN) and the Multicast Hash Enable (MITIHEN) bits in the Network Configuration Register (MAC_NCFGR) enable the reception of hash matched frames.

Bit	31	30	29	28	27	26	25	24
				ADDR	[31:24]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				ADDR	[23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				ADDR	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				ADDI	R[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 31:0 - ADDR[31:0] Hash Address

Bits 63 to 32 of the Hash Address Register.

11.2.5 MAC Specific Address 1 Bottom Register

 Name:
 MAC_SAB1

 Address:
 0x022

 Reset:
 0x0000000

 Property:
 Read/Write

The addresses stored in the Specific Address Registers are deactivated at reset or when their corresponding Specific Address Register Bottom is written. They are activated when Specific Address Register Top is written.

Bit	31	30	29	28	27	26	25	24
				ADDR	[31:24]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit _	23	22	21	20	19	18	17	16
				ADDR	[23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				ADDR	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				ADDI	R[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 31:0 - ADDR[31:0] Specific Address 1

Least significant 32 bits of the destination address, that is, bits 31:0. Bit zero indicates whether the address is multicast or unicast and corresponds to the least significant bit of the first byte received.

11.2.6 MAC Specific Address 1 Top Register

 Name:
 MAC_SAT1

 Address:
 0x023

 Reset:
 0x0000000

 Property:
 Read/Write

The addresses stored in the Specific Address Registers are deactivated at reset or when their corresponding Specific Address Register Bottom is written. They are activated when Specific Address Register Top is written.

Bit	31	30	29	28	27	26	25	24
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
								FLTTYP
Access	RO	RO	RO	RO	RO	RO	RO	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				ADDR[47:40]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				ADDR[[39:32]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 16 - FLTTYP Filter Type 1

This control bit selects whether this filter should be comparing the MAC source address or the MAC destination address of the received Ethernet frame. When set to zero, the filter is a destination address filter. When set to one, the filter is a source address filter.

Bits 15:0 - ADDR[47:32] Specific Address 1

The most significant bits of the destination address, that is, bits 47:32.

11.2.7 MAC Specific Address 2 Bottom Register

 Name:
 MAC_SAB2

 Address:
 0x024

 Reset:
 0x0000000

 Property:
 Read/Write

The addresses stored in the Specific Address Registers are deactivated at reset or when their corresponding Specific Address Register Bottom is written. They are activated when Specific Address Register Top is written.

Bit	31	30	29	28	27	26	25	24
				ADDR	[31:24]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				ADDR	[23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				ADDR	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				ADDI	R[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 31:0 - ADDR[31:0] Specific Address 2

Least significant 32 bits of the destination address, that is, bits 31:0. Bit zero indicates whether the address is multicast or unicast and corresponds to the least significant bit of the first byte received.

11.2.8 MAC Specific Address 2 Top Register

 Name:
 MAC_SAT2

 Address:
 0x025

 Reset:
 0x0000000

 Property:
 Read/Write

The addresses stored in the Specific Address Registers are deactivated at reset or when their corresponding Specific Address Register Bottom is written. They are activated when Specific Address Register Top is written.

Bit	31	30	29	28	27	26	25	24
					FLTBI	M[5:0]		
Access	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit _	23	22	21	20	19	18	17	16
								FLTTYP
Access	RO	RO	RO	RO	RO	RO	RO	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				ADDR[47:40]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				ADDR[[39:32]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 29:24 – FLTBM[5:0] Filter Byte Mask 2

When set, the associated byte of the specific address will not be compared. Bit 24 controls whether the first byte received should be compared. Bit 29 controls whether the last byte received should be compared.

Bit 16 - FLTTYP Filter Type 2

This control bit selects whether this filter should be comparing the MAC source address or the MAC destination address of the received Ethernet frame. When set to zero, the filter is a destination address filter. When set to one, the filter is a source address filter.

Bits 15:0 - ADDR[47:32] Specific Address 2

The most significant bits of the destination address, that is, bits 47:32.

11.2.9 MAC Specific Address 3 Bottom Register

 Name:
 MAC_SAB3

 Address:
 0x026

 Reset:
 0x0000000

 Property:
 Read/Write

The addresses stored in the Specific Address Registers are deactivated at reset or when their corresponding Specific Address Register Bottom is written. They are activated when Specific Address Register Top is written.

Bit	31	30	29	28	27	26	25	24
				ADDR	[31:24]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
		'		ADDR	[23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				ADDR	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				ADDI	R[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 31:0 - ADDR[31:0] Specific Address 3

Least significant 32 bits of the destination address, that is, bits 31:0. Bit zero indicates whether the address is multicast or unicast and corresponds to the least significant bit of the first byte received.

11.2.10 MAC Specific Address 3 Top Register

 Name:
 MAC_SAT3

 Address:
 0x027

 Reset:
 0x0000000

 Property:
 Read/Write

The addresses stored in the Specific Address Registers are deactivated at reset or when their corresponding Specific Address Register Bottom is written. They are activated when Specific Address Register Top is written.

Bit	31	30	29	28	27	26	25	24
					FLTBN	M[5:0]		
Access	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
								FLTTYP
Access	RO	RO	RO	RO	RO	RO	RO	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				ADDR[[47:40]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				ADDR[[39:32]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 29:24 – FLTBM[5:0] Filter Byte Mask 3

When set, the associated byte of the specific address will not be compared. Bit 24 controls whether the first byte received should be compared. Bit 29 controls whether the last byte received should be compared.

Bit 16 - FLTTYP Filter Type 3

This control bit selects whether this filter should be comparing the MAC source address or the MAC destination address of the received Ethernet frame. When set to zero, the filter is a destination address filter. When set to one, the filter is a source address filter.

Bits 15:0 - ADDR[47:32] Specific Address 3

The most significant bits of the destination address, that is, bits 47:32.

11.2.11 MAC Specific Address 4 Bottom Register

 Name:
 MAC_SAB4

 Address:
 0x028

 Reset:
 0x0000000

 Property:
 Read/Write

The addresses stored in the Specific Address Registers are deactivated at reset or when their corresponding Specific Address Register Bottom is written. They are activated when Specific Address Register Top is written.

Bit	31	30	29	28	27	26	25	24
				ADDR	[31:24]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
		'		ADDR	[23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				ADDR	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				ADDI	R[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 31:0 - ADDR[31:0] Specific Address 4

Least significant 32 bits of the destination address, that is, bits 31:0. Bit zero indicates whether the address is multicast or unicast and corresponds to the least significant bit of the first byte received.

11.2.12 MAC Specific Address 4 Top Register

 Name:
 MAC_SAT4

 Address:
 0x029

 Reset:
 0x0000000

 Property:
 Read/Write

The addresses stored in the Specific Address Registers are deactivated at reset or when their corresponding Specific Address Register Bottom is written. They are activated when Specific Address Register Top is written.

Bit	31	30	29	28	27	26	25	24
					FLTBN	M[5:0]		
Access	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
								FLTTYP
Access	RO	RO	RO	RO	RO	RO	RO	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				ADDR[[47:40]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				ADDR[[39:32]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 29:24 – FLTBM[5:0] Filter Byte Mask 4

When set, the associated byte of the specific address will not be compared. Bit 24 controls whether the first byte received should be compared. Bit 29 controls whether the last byte received should be compared.

Bit 16 - FLTTYP Filter Type 4

This control bit selects whether this filter should be comparing the MAC source address or the MAC destination address of the received Ethernet frame. When set to zero, the filter is a destination address filter. When set to one, the filter is a source address filter.

Bits 15:0 - ADDR[47:32] Specific Address 4

The most significant bits of the destination address, that is, bits 47:32.

11.2.13 MAC Type ID Match 1 Register

Name: MAC_TIDM1 Address: 0x02A

Reset: 0x00000000 **Property:** Read/Write

Bit	31	30	29	28	27	26	25	24
	ENID							
Access	R/W	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit _	23	22	21	20	19	18	17	16
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				TID[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				TID[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 31 - ENID Enable Copying of TID 1 Matched Frames

Value	Description
0	TID 1 is not part of the comparison match.
1	TID 1 is processed for the comparison match.

Bits 15:0 - TID[15:0] Type ID Match 1

11.2.14 MAC Type ID Match 2 Register

Name: MAC_TIDM2 Address: 0x02B

Reset: 0x00000000 **Property:** Read/Write

Bit	31	30	29	28	27	26	25	24
	ENID							
Access	R/W	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
[
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				TID[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				TID[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 31 - ENID Enable Copying of TID 2 Matched Frames

Value	Description
0	TID 2 is not part of the comparison match.
1	TID 2 is processed for the comparison match.

Bits 15:0 - TID[15:0] Type ID Match 2

11.2.15 MAC Type ID Match 3 Register

Name: MAC_TIDM3

Address: 0x02C

Reset: 0x00000000 **Property:** Read/Write

Bit	31	30	29	28	27	26	25	24
	ENID							
Access	R/W	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				TID[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				TID[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 31 - ENID Enable Copying of TID 3 Matched Frames

Value	Description
0	TID 3 is not part of the comparison match.
1	TID 3 is processed for the comparison match.

Bits 15:0 - TID[15:0] Type ID Match 3

11.2.16 MAC Type ID Match 4 Register

 Name:
 MAC_TIDM4

 Address:
 0x02D

 Reset:
 0x00000000

 Property:
 Read/Write

Bit	31	30	29	28	27	26	25	24	
	ENID								
Access	R/W	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	
Bit	23	22	21	20	19	18	17	16	
Access	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	
Bit	15	14	13	12	11	10	9	8	
				TID[15:8]				
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
	TID[7:0]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

Bit 31 - ENID Enable Copying of TID 4 Matched Frames

Value	Description
0	TID 4 is not part of the comparison match.
1	TID 4 is processed for the comparison match.

Bits 15:0 - TID[15:0] Type ID Match 4

11.2.17 MAC Specific Address 1 Mask Bottom

Name: MAC_SAMB1

Address: 0x032

Reset: 0x00000000

Property: -

Bit	31	30	29	28	27	26	25	24
				ADDR	[31:24]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				ADDR	[23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				ADDR	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				ADDI	R[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 31:0 - ADDR[31:0] Specific Address 1 Mask

Setting a bit to '1' masks the corresponding bit in the Specific Address 1 Bottom register (MAC_SAB1).

11.2.18 MAC Specific Address Mask 1 Top

Name: MAC_SAMT1

Address: 0x033 **Reset:** 0x00000000

Property: -

Bit	31	30	29	28	27	26	25	24
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				ADDR[47:40]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				ADDR[[39:32]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - ADDR[47:32] Specific Address 1 Mask

Setting a bit to '1' masks the corresponding bit in the Specific Address 1 register MAC_SAT1.

11.2.19 TSU Timer Increment Sub-nanoseconds Register

Name: MAC_TISUBN

Address: 0x06F

Reset: 0x00000000 **Property:** Read/Write

Bit	31	30	29	28	27	26	25	24
				LSBTI	R[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				MSBTII	R[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				MSBTI	IR[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 31:24 - LSBTIR[7:0] Lower Significant Bits of Timer Increment Register

The least significant bits 16 bits of the sub nanosecond timer increment. This bitfield combines with LMSBTIR to provide a 24-bit timer_increment counter. These 24 bits are the sub-ns value which the TSU timer will be incremented each clock cycle.

Bits 15:0 - MSBTIR[15:0] Most Significant Bits of Timer Increment Register

The most significant bits 16 bits of the sub nanosecond timer increment. This bitfield combines with LSBTIR to provide a 24-bit timer increment counter. These 24 bits are the sub-ns value which the TSU timer will be incremented each clock cycle. Bit $n = 2^{(n-24)}$ ns giving a resolution of approximately 5.86E⁻¹⁷ sec (16 bits give 15.2 femtoseconds).

11.2.20 TSU Timer Seconds High Register

 Name:
 MAC_TSH

 Address:
 0x070

 Reset:
 0x00000000

Property: Read/Write

Bit	31	30	29	28	27	26	25	24
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				TCS[4	17:40]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				TCS[3	39:32]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - TCS[47:32] Timer Count in Seconds

This register contains the upper 16 bits of the 48-bit timestamp unit seconds counter. It increments by 1 when the TSU nanoseconds counter counts to one second. It may also be incremented when the Timer Adjust Register is written.

11.2.21 TSU Timer Seconds Low Register

 Name:
 MAC_TSL

 Address:
 0x074

 Reset:
 0x0000000

 Property:
 Read/Write

Bit	31	30	29	28	27	26	25	24			
				TCS[3	31:24]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
Bit	23	22	21	20	19	18	17	16			
		TCS[23:16]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
Bit	15	14	13	12	11	10	9	8			
				TCS[15:8]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
				TCS	[7:0]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			

Bits 31:0 - TCS[31:0] Timer Count in Seconds

This register contains the lower 32 bits of the 48-bit timestamp unit seconds counter. It increments by 1 when the TSU nanoseconds counter counts to one second. It may also be incremented when the Timer Adjust Register is written.

11.2.22 TSU Timer Nanoseconds Register

Name: MAC_TN Address: 0x075

Reset: 0x00000000 **Property:** Read/Write

Bit	31	30	29	28	27	26	25	24				
					TNS[2	29:24]						
Access	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W				
Reset	0	0	0	0	0	0	0	0				
Bit	23	22	21	20	19	18	17	16				
				TNS[23:16]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Reset	0	0	0	0	0	0	0	0				
Bit _	15	14	13	12	11	10	9	8				
				TNS[15:8]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Reset	0	0	0	0	0	0	0	0				
Bit	7	6	5	4	3	2	1	0				
				TNS	[7:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Reset	0	0	0	0	0	0	0	0				

Bits 29:0 - TNS[29:0] Timer Count in Nanoseconds

This register is writable. It can also be adjusted by writes to the TSU Timer Adjust Register. It increments by the value of the TSU Timer Increment Register each clock cycle.

11.2.23 TSU Timer Adjust Register

 Name:
 MAC_TA

 Address:
 0x076

 Reset:
 0x0000000

 Property:
 Write-Only

Bit	31	30	29	28	27	26	25	24	
	ADJ				ITDT[:	29:24]			
Access	W	RO	W	W	W	W	W	W	
Reset	0	0	0	0	0	0	0	0	
Bit	23	22	21	20	19	18	17	16	
]TDTI	23:16]				
Access	W	W	W	W	W	W	W	W	
Reset	0	0	0	0	0	0	0	0	
Bit	15	14	13	12	11	10	9	8	
				ITDT	[15:8]				
Access	W	W	W	W	W	W	W	W	
Reset	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
	ITDT[7:0]								
Access	W	W	W	W	W	W	W	W	
Reset	0	0	0	0	0	0	0	0	

Bit 31 - ADJ TSU Timer Adjust

Write as '1' to subtract from the TSU timer. Write as '0' to add to it.

Bits 29:0 - ITDT[29:0] Increment/Decrement

The number of nanoseconds to increment or decrement the TSU Timer Nanoseconds Register. If necessary, the TSU Seconds Register will be incremented or decremented.

11.2.24 TSU Timer Increment Register

Name: MAC_TI Address: 0x077

Reset: 0x00000000 **Property:** Read/Write

Bit	31	30	29	28	27	26	25	24	
Access	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	
Bit	23	22	21	20	19	18	17	16	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	
Bit	15	14	13	12	11	10	9	8	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
	CNS[7:0]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

Bits 7:0 - CNS[7:0] Count Nanoseconds

A count of nanoseconds by which the TSU Timer Nanoseconds Register will be incremented each clock cycle. The register TSU imer Increment Sub-nanoseconds (MAC_TISUBN) contains the subnanosecond portion of the increment.

11.2.25 MAC Buffer Manager Control

Name: BMGR_CTL Address: 0x0200

Bit	31	30	29	28	27	26	25	24
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
Access	RO	RO	RO	RO	RO	RO	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
			SNAPSTATS	CLRSTATS				
Access	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	1	0	0	0

Bit 5 - SNAPSTATS Snapshot Statistics Counters

Write this bit to '1' to snapshot all statistics counters.

Value	Description
0	Normal Operation. Statistics counters increment normally.
1	Snapshot. Statistics counters are frozen at their current value.

Bit 4 - CLRSTATS Clear Statistics Counters

Writing this bit to '1' will clear all statistics counters.

Value	Description
0	Normal operation. Statistics counters increment normally.
1	Statistics counters are cleared to 0.

11.2.26 Statistics 0

 Name:
 STATS0

 Address:
 0x0208

 Reset:
 0x00000000

Property: -

Bit	31	30	29	28	27	26	25	24		
	RXSE[7:0]									
Access	RC	RC	RC	RC	RC	RC	RC	RC		
Reset	0	0	0	0	0	0	0	0		
Bit _	23	22	21	20	19	18	17	16		
				LFEF	R[7:0]					
Access	RC	RC	RC	RC	RC	RC	RC	RC		
Reset	0	0	0	0	0	0	0	0		
Bit _	15	14	13	12	11	10	9	8		
					K[7:0]					
Access	RC	RC	RC	RC	RC	RC	RC	RC		
Reset	0	0	0	0	0	0	0	0		
Bit _	7	6	5	4	3	2	1	0		
	UFRX[7:0]									
Access	RC	RC	RC	RC	RC	RC	RC	RC		
Reset	0	0	0	0	0	0	0	0		

Bits 31:24 - RXSE[7:0] Receive Symbol Errors

This bit field counts the number of frames that had RXER asserted during reception. Symbol errors are counted regardless of frame length checks. Receive symbol errors will also be counted as an FCS or alignment error if the frame is between 64 and 1518 bytes (1536 bytes if MAC_NCFGR.MAXFS=1). If the frame is larger it will be recorded as an Oversize Frame Received (OFRX) error.

This field will saturate at 0xFF and will be cleared on read.

Bits 23:16 - LFER[7:0] Length Field Errors

This bit field counts the number of frames received that have a measured length shorter than that extracted from the length field (bytes 13 and 14). This condition is only counted if the value of the length field is less than 0x0600 (1536 bytes), the frame is not of excessive length and checking is enabled by writing a '1' to the Length Field Error Frame Discard bit in the Network Configuration Register (MAC_NCFGR.LFERD).

This field will saturate at 0xFF and will be cleared on read.

Bits 15:8 - OFRX[7:0] Oversize Frames Received

This bit field counts the number of frames received exceeding 1518 bytes in length (1536 bytes if MAC_NCFGR.MAXFS is written to '1') but do not have either a CRC error, an alignment error, nor a receive symbol error.

This field will saturate at 0xFF and will be cleared on read.

Bits 7:0 - UFRX[7:0] Undersize Frames Received

This bit field counts the number of frames received less than 64 bytes in length that do not have either a CRC error or an alignment error.

This field will saturate at 0xFF and will be cleared on read.

11.2.27 Statistics 1

Name: STATS1 Address: 0x0209 Reset: 0x00000000

Property: -

Bit	31	30	29	28	27	26	25	24		
	RXRER[7:0]									
Access	RC	RC	RC	RC	RC	RC	RC	RC		
Reset	0	0	0	0	0	0	0	0		
Bit	23	22	21	20	19	18	17	16		
				RXBO\	/R[7:0]					
Access	RC	RC	RC	RC	RC	RC	RC	RC		
Reset	0	0	0	0	0	0	0	0		
Bit	15	14	13	12	11	10	9	8		
					/R[7:0]					
Access	RC	RC	RC	RC	RC	RC	RC	RC		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
Access	RC	RC	RC	RC	RC	RC	RC	RC		
Reset	0	0	0	0	0	0	0	0		

Bits 31:24 - RXRER[7:0] Receive Resource Errors

This bit field counts frames that were not received from the network because there was no internal memory resource available at the beginning of frame reception. The receive frame is ignored. This field will saturate at 0xFF and will be cleared on read.

Bits 23:16 - RXBOVR[7:0] Receive Buffer Overruns

This bit field counts the number of frames that are address recognized but dropped due to a receive buffer overrun during the middle of frame reception.

This field will saturate at 0xFF and will be cleared on read.

Bits 15:8 - RXFOVR[7:0] Receive FIFO Overruns

This bit field counts the number of frames that are address recognized but dropped due to a receive FIFO overrun during the middle of frame reception.

This field will saturate at 0xFF and will be cleared on read.

11.2.28 Statistics 2

 Name:
 STATS2

 Address:
 0x020A

 Reset:
 0x00000000

Property: -

Bit	31	30	29	28	27	26	25	24	
Access	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	
Bit	23	22	21	20	19	18	17	16	
Access	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	
Bit	15	14	13	12	11	10	9	8	
Access	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
	FCSE[7:0]								
Access	RC	RC	RC	RC	RC	RC	RC	RC	
Reset	0	0	0	0	0	0	0	0	

Bits 7:0 - FCSE[7:0] Frame Check Sequence Errors

The register counts frames that are an integral number of bytes, have bad CRC and are between 64 and 1518 bytes in length (1536 Bytes if MAC_NCFGR.MAXFS is written to '1'). This register is also incremented if a symbol error is detected and the frame is of valid length and has an integral number of bytes.

This register is incremented for a frame with bad FCS, regardless of whether it is copied to memory due to ignore FCS mode (enabled by writing MAC_NCFGR.IRXFCS=1).

This field will saturate at 0xFF and will be cleared on read.

11.2.29 Statistics 3

 Name:
 STATS3

 Address:
 0x020B

 Reset:
 0x00000000

Property: -

Bit	31	30	29	28	27	26	25	24		
				TID4MC	NT[7:0]					
Access	RC	RC	RC	RC	RC	RC	RC	RC		
Reset	0	0	0	0	0	0	0	0		
Bit	23	22	21	20	19	18	17	16		
				TID3MC	NT[7:0]					
Access	RC	RC	RC	RC	RC	RC	RC	RC		
Reset	0	0	0	0	0	0	0	0		
Bit	15	14	13	12	11	10	9	8		
				TID2MC	NT[7:0]					
Access	RC	RC	RC	RC	RC	RC	RC	RC		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
	TID1MCNT[7:0]									
Access	RC	RC	RC	RC	RC	RC	RC	RC		
Reset	0	0	0	0	0	0	0	0		

Bits 31:24 - TID4MCNT[7:0] Type ID 4 Match Count

This field will saturate at 0xFF and will be cleared on read.

Bits 23:16 - TID3MCNT[7:0] Type ID 3 Match Count

This field will saturate at 0xFF and will be cleared on read.

Bits 15:8 - TID2MCNT[7:0] Type ID 2 Match Count

This field will saturate at 0xFF and will be cleared on read.

Bits 7:0 - TID1MCNT[7:0] Type ID 1 Match Count

This field will saturate at 0xFF and will be cleared on read.

11.2.30 Statistics 4

 Name:
 STATS4

 Address:
 0x020C

 Reset:
 0x00000000

Property: -

Bit	31	30	29	28	27	26	25	24	
				SA4MC	NT[7:0]				
Access	RC	RC	RC	RC	RC	RC	RC	RC	
Reset	0	0	0	0	0	0	0	0	
Bit	23	22	21	20	19	18	17	16	
				SA3MC	NT[7:0]				
Access	RC	RC	RC	RC	RC	RC	RC	RC	
Reset	0	0	0	0	0	0	0	0	
Bit _	15	14	13	12	11	10	9	8	
				SA2MC	NT[7:0]				
Access	RC	RC	RC	RC	RC	RC	RC	RC	
Reset	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
	SA1MCNT[7:0]								
Access	RC	RC	RC	RC	RC	RC	RC	RC	
Reset	0	0	0	0	0	0	0	0	

Bits 31:24 – SA4MCNT[7:0] Specific Address 4 Match Count This field will saturate at 0xFF and will be cleared on read.

Bits 23:16 - SA3MCNT[7:0] Specific Address 3 Match Count This field will saturate at 0xFF and will be cleared on read.

Bits 15:8 – SA2MCNT[7:0] Specific Address 2 Match Count This field will saturate at 0xFF and will be cleared on read.

Bits 7:0 – SA1MCNT[7:0] Specific Address 1 Match Count This field will saturate at 0xFF and will be cleared on read.

11.2.31 Statistics 5

 Name:
 STATS5

 Address:
 0x020D

 Reset:
 0x00000000

Property: -

Bit	31	30	29	28	27	26	25	24		
				UHMF	RX[7:0]					
Access	RC	RC	RC	RC	RC	RC	RC	RC		
Reset	0	0	0	0	0	0	0	0		
Bit	23	22	21	20	19	18	17	16		
				MHMF	RX[7:0]					
Access	RC	RC	RC	RC	RC	RC	RC	RC		
Reset	0	0	0	0	0	0	0	0		
Bit	15	14	13	12	11	10	9	8		
				BFR	([7:0]					
Access	RC	RC	RC	RC	RC	RC	RC	RC		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
	VTRX[7:0]									
Access	RC	RC	RC	RC	RC	RC	RC	RC		
Reset	0	0	0	0	0	0	0	0		

Bits 31:24 - UHMFRX[7:0] Unicast Hash Match Frames Received without Error

This register counts the number of unicast hash matching frames successfully received without error. It is only incremented if the frame is successfully filtered and copied to memory. This field will saturate at 0xFF and will be cleared on read.

Bits 23:16 - MHMFRX[7:0] Multicast Hash Match Frames Received without Error

This register counts the number of multicast hash matching frames successfully received without error. It is only incremented if the frame is successfully filtered and copied to memory. This field will saturate at 0xFF and will be cleared on read.

Bits 15:8 - BFRX[7:0] Broadcast Frames Received without Error

This bit field counts the number of broadcast frames successfully received without error. It is only incremented if the frame is successfully filtered and copied to memory. This field will saturate at 0xFF and will be cleared on read.

Bits 7:0 - VTRX[7:0] VLAN Tagged Frames Received without Error

This bit field counts the number of VLAN tagged frames successfully received without error. It is only incremented if the frame is successfully copied to memory.

This field will saturate at 0xFF and will be cleared on read.

11.2.32 Statistics 6

 Name:
 STATS6

 Address:
 0x020E

 Reset:
 0x00000000

Property: -

Bit	31	30	29	28	27	26	25	24			
				TFRX[31:24]						
Access	RC	RC	RC	RC	RC	RC	RC	RC			
Reset	0	0	0	0	0	0	0	0			
Bit	23	22	21	20	19	18	17	16			
		TFRX[23:16]									
Access	RC	RC	RC	RC	RC	RC	RC	RC			
Reset	0	0	0	0	0	0	0	0			
Bit	15	14	13	12	11	10	9	8			
				TFRX	[15:8]						
Access	RC	RC	RC	RC	RC	RC	RC	RC			
Reset	0	0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
	TFRX[7:0]										
Access	RC	RC	RC	RC	RC	RC	RC	RC			
Reset	0	0	0	0	0	0	0	0			

Bits 31:0 - TFRX[31:0] Total Frames Received (including errors)

This bit field counts the number of frames received, including those with errors. This field will saturate at 0xFFFFFFF and will be cleared on read.

11.2.33 Statistics 7

Name: STATS7 Address: 0x020F Reset: 0x00000000

Property: -

Bit	31	30	29	28	27	26	25	24	
				FRX[3	31:24]				
Access	RC	RC	RC	RC	RC	RC	RC	RC	
Reset	0	0	0	0	0	0	0	0	
Bit	23	22	21	20	19	18	17	16	
				FRX[2	23:16]				
Access	RC	RC	RC	RC	RC	RC	RC	RC	
Reset	0	0	0	0	0	0	0	0	
Bit	15	14	13	12	11	10	9	8	
				FRX[15:8]				
Access	RC	RC	RC	RC	RC	RC	RC	RC	
Reset	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
	FRX[7:0]								
Access	RC	RC	RC	RC	RC	RC	RC	RC	
Reset	0	0	0	0	0	0	0	0	

Bits 31:0 - FRX[31:0] Frames Received without Error

This bit field counts the number of frames successfully received. It is only incremented if the frame is successfully filtered and copied to memory.

This field will saturate at 0xFFFFFFF and will be cleared on read.

11.2.34 Statistics 8

Name: STATS8 Address: 0x0210 Reset: 0x00000000

Property: -

Bit	31	30	29	28	27	26	25	24
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				TXAIE	[7:0]			
Access	RC	RC	RC	RC	RC	RC	RC	RC
Reset	0	0	0	0	0	0	0	0

Bits 7:0 - TXAIE[7:0] Transmit Abort Internal Error

This bit field counts the number of frames that were aborted and dropped due to an internal error. This field will saturate at 0xFF and will be cleared on read.

11.2.35 Statistics 9

 Name:
 STATS9

 Address:
 0x0211

 Reset:
 0x0000000

Property: -

Bit	31	30	29	28	27	26	25	24			
				TXAEI	E[7:0]						
Access	RC	RC	RC	RC	RC	RC	RC	RC			
Reset	0	0	0	0	0	0	0	0			
Bit	23	22	21	20	19	18	17	16			
		TXFUR[7:0]									
Access	RC	RC	RC	RC	RC	RC	RC	RC			
Reset	0	0	0	0	0	0	0	0			
Bit	15	14	13	12	11	10	9	8			
				TXBU	R[7:0]						
Access	RC	RC	RC	RC	RC	RC	RC	RC			
Reset	0	0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
Access	RO	RO	RO	RO	RO	RO	RO	RO			
Reset	0	0	0	0	0	0	0	0			

Bits 31:24 - TXAEE[7:0] Transmit Abort External Error

This bit field counts the number of frames that were aborted and dropped due to an external SPI host error. Such errors include:

- Repeated Frame Start the device received two start-of-frame indication from the SPI host without an end-of-frame.
- Frame received from the SPI host exceeds 1536 bytes in length
- Transmit Frame Check Sequence Error The SPI host appended Frame Check Sequence (FCS)
 does not match the frame data received from the host. This may indicate a bit error on SPI, or the
 host incorrectly calculated the FCS.

This field will saturate at 0xFF and will be cleared on read.

Bits 23:16 - TXFUR[7:0] Transmit FIFO Underruns

This bit field counts the number of frames that were dropped due to transmit FIFO underrun during the middle of frame transmission.

This field will saturate at 0xFF and will be cleared on read.

Bits 15:8 - TXBUR[7:0] Transmit Buffer Underruns

This bit field counts the number of frames that were dropped due to buffer underrun during the middle of frame transmission.

This field will saturate at 0xFF and will be cleared on read.

11.2.36 Statistics 10

 Name:
 STATS10

 Address:
 0x0212

 Reset:
 0x00000000

Property: -

Bit	31	30	29	28	27	26	25	24
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				XCOL	_[7:0]			
Access	RC	RC	RC	RC	RC	RC	RC	RC
Reset	0	0	0	0	0	0	0	0

Bits 7:0 - XCOL[7:0] Excessive Collisions

This register counts the number of frames that failed to be transmitted because they experienced 16 collisions.

This field will saturate at 0xFF and will be cleared on read.

11.2.37 Statistics 11

Name: STATS11 Address: 0x0213 Reset: 0x00000000

Property: -

Bit	31	30	29	28	27	26	25	24		
				TFTX[:	31:24]					
Access	RC	RC	RC	RC	RC	RC	RC	RC		
Reset	0	0	0	0	0	0	0	0		
Bit _	23	22	21	20	19	18	17	16		
				TFTX[23:16]					
Access	RC	RC	RC	RC	RC	RC	RC	RC		
Reset	0	0	0	0	0	0	0	0		
Bit _	15	14	13	12	11	10	9	8		
					[15:8]					
Access	RC	RC	RC	RC	RC	RC	RC	RC		
Reset	0	0	0	0	0	0	0	0		
Bit _	7	6	5	4	3	2	1	0		
	TFTX[7:0]									
Access	RC	RC	RC	RC	RC	RC	RC	RC		
Reset	0	0	0	0	0	0	0	0		

Bits 31:0 - TFTX[31:0] Total Frames Transmitted (including errors)

This bit field counts the number of frames attempted to be transmitted. This count includes frames that incurred an error while being transmitted.

This field will saturate at 0xFFFFFFF and will be cleared on read.

11.2.38 Statistics 12

 Name:
 STATS12

 Address:
 0x0214

 Reset:
 0x00000000

Property: -

Bit	31	30	29	28	27	26	25	24			
				FTX[3	31:24]						
Access	RC	RC	RC	RC	RC	RC	RC	RC			
Reset	0	0	0	0	0	0	0	0			
Bit	23	22	21	20	19	18	17	16			
		FTX[23:16]									
Access	RC	RC	RC	RC	RC	RC	RC	RC			
Reset	0	0	0	0	0	0	0	0			
Bit	15	14	13	12	11	10	9	8			
				FTX[15:8]						
Access	RC	RC	RC	RC	RC	RC	RC	RC			
Reset	0	0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
	FTX[7:0]										
Access	RC	RC	RC	RC	RC	RC	RC	RC			
Reset	0	0	0	0	0	0	0	0			

Bits 31:0 - FTX[31:0] Frames Transmitted without Error

This bit field counts the number of frames successfully transmitted, .i.e., no underrun and not too many retries.

This field will saturate at 0xFFFFFFF and will be cleared on read.

11.3 PHY PCS Registers

The integrated PHY PCS registers are located within Memory Map Selector 2 (MMS2).

RESERVED address space must not be written except when specifically directed to by Microchip. Failure to heed this warning may result in adverse operation and unexpected results.

Refer to the Register Bit Types section for details on register bit attribute notation.

Address	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x00										
	Reserved									
0x08F2										
0x08F3	T1SPCSCTL	15:8	RST	LBE						DUPLEX
0.00613	TISTESCIE	7:0								
0x08F4	T1SPCSSTS	15:8								
0x06F4	113FC3313	7:0	FAULT							
0x08F5	T1CDCCDIAC1	15:8				RMTJABC	NT[15:8]			
UXU6F3	T1SPCSDIAG1 7:0					RMTJAB	CNT[7:0]			
0,000	T1CDCCDIAC2	15:8				CORTXC	NT[15:8]			
0x08F6	T1SPCSDIAG2	7:0				CORTXC	NT[7:0]			

Related Links

1.3. Register Bit Types

11.3.1 10BASE-T1S PCS Control

Name: T1SPCSCTL Address: 0x08F3

Bit	15	14	13	12	11	10	9	8
	RST	LBE						DUPLEX
Access	R/W SC	R/W	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	1
Bit	7	6	5	4	3	2	1	0
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0

Bit 15 - RST PCS Reset

When this bit is set, the PCS 4B5B encoder/decoder, scrambler/descrambler, and frame encoder/decoder blocks will be reset.

Note: This bit is self-clearing. When setting this bit, do not set other bits in this register.

Value	Description
0	Normal Operation
1	PCS reset

Bit 14 - LBE PCS Loopback Enable

When this bit is set, data from the MAC will be passed through the PHY to the PCS and returned back to the MAC. This tests the full path from the MAC media interface through the PCS scrambler/descrambler and 4B/5B encoder/decoder.

Important: PLCA must be disabled when the PCS loopback mode is enabled.

Value	Description
0	Disable PCS loopback mode
1	Enable PCS loopback mode

Bit 8 - DUPLEX Duplex Mode

Note: Only half-duplex operation is supported. This bit is always 1.

Value	Description
0	Full-duplex operation
1	Half-duplex operation

11.3.2 10BASE-T1S PCS Status

Name: T1SPCSSTS Address: 0x08F4

Bit	15	14	13	12	11	10	9	8
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	FAULT							
Access	RC	RO						
Reset	0	0	0	0	0	0	0	0

Bit 7 - FAULT PCS Fault Indication

This bit will be set when the PCS has detected a fault condition on the receive or transmit path. **Note:** This bit always reads '0' as there are no detectable PCS faults.

Value	Description
0	No PCS fault detected
1	PCS fault condition detected

11.3.3 10BASE-T1S PCS Diagnostic 1

Name: T1SPCSDIAG1

Address: 0x08F5

Bit	15	14	13	12	11	10	9	8			
	RMTJABCNT[15:8]										
Access	RC	RC	RC	RC	RC	RC	RC	RC			
Reset	0	0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
				RMTJAB	CNT[7:0]						
Access	RC	RC	RC	RC	RC	RC	RC	RC			
Reset	0	0	0	0	0	0	0	0			

Bits 15:0 - RMTJABCNT[15:0] Remote Jabber Count

Field counting the number of remote jabber events (ESDJAB) received since the last read of the register. This field will saturate at 0xFFFF.

11.3.4 10BASE-T1S PCS Diagnostic 2

Name: T1SPCSDIAG2

Address: 0x08F6

Bit	15	14	13	12	11	10	9	8			
	CORTXCNT[15:8]										
Access	RC	RC	RC	RC	RC	RC	RC	RC			
Reset	0	0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
				CORTXC	NT[7:0]						
Access	RC	RC	RC	RC	RC	RC	RC	RC			
Reset	0	0	0	0	0	0	0	0			

Bits 15:0 - CORTXCNT[15:0] Corrupted Transmit Count

Field containing the number of times a locally initiated transmission resulted in a corrupted signal at the MDI. Corruption during transmission would typically be due to collisions on the physical layer. This field is self-clearing when read. This field will saturate at 0xFFFF.

11.4 PHY PMA/PMD Registers

The integrated PHY PMA/PMD registers are located within Memory Map Selector 3 (MMS3).

RESERVED address space must not be written except when specifically directed to by Microchip. Failure to heed this warning may result in adverse operation and unexpected results.

Refer to the Register Bit Types section for details on register bit attribute notation.

Address	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x00 0x11	Reserved									
0x12	T1PMAPMDEXTA	15:8 7:0					T1SABL	T1LABL		
0x14 0x0833	Reserved									
0x0834	T1PMAPMDCTL	15:8 7:0						TYPSE	EL[3:0]	
0x0836 0x08F8	Reserved									
0x08F9	T1SPMACTL	15:8 7:0	RST	TXD			LPE	MDE		LBE
0x08FA	T1SPMASTS	15:8 7:0			LBA		LPA	MDA	RXFA RXFD	
0x08FB	T1STSTCTL	15:8 7:0		TSTCTL[2:0]						

Related Links

1.3. Register Bit Types

11.4.1 BASE-T1 PMA/PMD Extended Ability

Name: T1PMAPMDEXTA

Address: 0x0012

Bit	15	14	13	12	11	10	9	8
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
Bit [7	6	5	4	3 T1SABL	2 T1LABL	1	0
Bit [Access	7 RO	6 RO	5 RO	4 RO	3 T1SABL RO	2 T1LABL RO	1 RO	0 RO

Bit 3 - T1SABL 10BASE-T1S Ability

This bit indicates the ability of the PHY to support 10BASE-T1S. **Note:** 10BASE-T1S operation is supported. This bit always reads 1.

Value	Description
0	PMA/PMD is not able to perform 10BASE-T1S operation
1	PMA/PMD is able to perform 10BASE-T1S operation

Bit 2 - T1LABL 10BASE-T1L Ability

This bit indicates the ability of the PHY to support 10BASE-T1L.

Note: 10BASE-T1L operation is not supported. This bit always reads 0.

V	'alue	Description
)	PMA/PMD is not able to perform 10BASE-T1L operation
	1	PMA/PMD is able to perform 10BASE-T1L operation

11.4.2 BASE-T1 PMA/PMD Control

Name: T1PMAPMDCTL

Address: 0x0834

Bit	15	14	13	12	11	10	9	8	
Access	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
						TYPSEL[3:0]			
Access	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	1	1	

Bits 3:0 - TYPSEL[3:0] Type Selection

This field sets the PMA/PMD mode of operation.

Note: Only 10BASE-T1S operation is supported. This field always reads 0011b.

Value	Description
0000b	100BASE-T1
0001b	1000BASE-T1
0010b	10BASE-T1L
0011b	10BASE-T1S
01xxb	Reserved
1xxxb	Reserved

11.4.3 10BASE-T1S PMA Control

Name: T1SPMACTL Address: 0x08F9

Bit	15	14	13	12	11	10	9	8
	RST	TXD			LPE	MDE		
Access	R/W SC	R/W	RO	RO	R/W	R/W	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
								LBE
Access	RO	RO	RO	RO	RO	RO	RO	R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - RST PMA Reset

Setting this bit will reset the device PMA.

Note: This bit is self-clearing. When setting this bit, do not set other bits in this register.

Value	Description		
0	Normal Operation		
1	PMA Reset		

Bit 14 - TXD Transmit Disable

The PMA transmit path is disabled when this bit is set. This bit must be clear for normal operation.

Value	Description
0	Normal operation
1	Transmit disable

Bit 11 - LPE Low Power Enable

Setting this bit will power down the PMA.

Note: This bit has the same effect as the Power Down bit in the Clause 22 BASIC_CONTROL register.

Value	Description
0	Normal operation
1	Place PMA into low-power mode

Bit 10 - MDE Multidrop Enable

When set, this bit will enable multidrop operation on a mixing segment.

Note: This bit has no effect on the operation of the device.

Value	Description
0	Disable mixing segment operation (point-to-point mode)
1	Enable PMA multidrop (mixing segment) operation

Bit 0 - LBE PMA Loopback Enable

This bit will enable the PMA loopback test mode when set. Data received from the MAC via the media interface will be passed through the PCS scrambler/descrambler, 4B/5B encoder/decoder, and the PMA differential Manchester encoder/decoder and returned back to the MAC.

Important: PLCA must be disabled or configured as the PLCA Coordinator (Local ID = 0) when the PMA loopback mode is enabled.

Register Descriptions

Value	Description
0	Disable PMA loopback mode
1	Enable PMA loopback mode

11.4.4 10BASE-T1S PMA Status

Name: T1SPMASTS Address: 0x08FA

Bit	15	14	13	12	11	10	9	8
			LBA		LPA	MDA	RXFA	
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	1	0	1	1	0	0
Bit	7	6	5	4	3	2	1	0
							RXFD	
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0

Bit 13 - LBA PMA Loopback Ability

This bit indicates that the device has PMA loopback ability. **Note:** PMA loopback is supported. This bit always reads as 1.

Value	Description
0	PHY does not support PMA loopback mode
1	PHY supports PMA loopback mode

Bit 11 - LPA Low Power Ability

This bit is set to indicate that the device PMA supports a low power state.

Note: PMA low power mode is supported. This bit always reads as 1.

Value	Description
0	PMA does not have low power ability
1	PMA has low power ability

Bit 10 - MDA Multidrop Ability

This bit is set to indicate that the device supports multidrop operation on a mixing segment.

Note: Multidrop mixing segment operation is supported. This bit always reads as 1.

Value	Description
0	PMA does not support mixing segment operation (point-to-point only)
1	PMA supports multidrop (mixing segment) operation

Bit 9 - RXFA Receive Fault Ability

This bit indicates the ability of the device to detect a fault on the PMA receive path.

Note: The device is unable to detect a PMA receive path fault. This bit always reads as 0.

Value	Description
0	PHY does not have the ability to detect PMA faults
1	PHY has the ability to detect faults in the PMA receive path

Bit 1 - RXFD Receive Fault Detection

This bit will be set when the PMA has detected a fault on the receive path.

Note: The device PMA does not support PMA receive fault detection. This bit always reads 0.

Value	Description
0	No PMA fault detected
1	PMA fault condition detected

11.4.5 10BASE-T1S Test Mode Control

Name: T1STSTCTL Address: 0x08FB

Bit	15	14	13	12	11	10	9	8
		TSTCTL[2:0]						
Access	R/W	R/W	R/W	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0

Bits 15:13 - TSTCTL[2:0] Test Mode Control

This field configures and enables the various IEEE specified test modes. For a description of the test modes, refer to Clause 147.5.2 of the IEEE 802.3cgTM-2019 Amendment 5: Physical Layers Specifications and Management Parameters for 10 Mb/s Operation and Associated Power Delivery over a Single Balanced Pair of Conductors.

Jiligic De	staticed fair of conductors.
Value	Description
000	Normal (non-test) operation
001	Test mode 1 - Transmitter output voltage, timing jitter
010	Test mode 2 - Transmitter output droop
011	Test mode 3 - Transmitter PSD mask
100	Test mode 4 - Transmitter high impedance mode
101	Reserved
11x	Reserved

11.5 PHY Vendor Specific Registers

The integrated PHY vendor specific registers are located within Memory Map Selector 4 (MMS4).

RESERVED address space must not be written except when specifically directed to by Microchip. Failure to heed this warning may result in adverse operation and unexpected results.

Refer to the Register Bit Types section for details on register bit attribute notation.

Address	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x00										
	Reserved									
0x0F		15.0								
0x10	CTRL1	15:8 7:0					IWDE		DIGLBE	
0x12		7.0					IVVDL		DIGLBL	
	Reserved									
0x17										
0x18	STS1	15:8				SQI	PSTC	TXCOL	TXJAB	TSSI
OXIO	3131	7:0	EMPCYC	RXINTO	UNEXPB	BCNBFTO	UNCRS	PLCASYM	ESDERR	DEC5B
0x19	STS2	15:8						WKEMDI	WKEWI	UV33
		7:0		OT	IWDTO					
0x1A	STS3	15:8								
		7:0				ERRTO		TVCCLN	T/// D14	TCC11.4
0x1C	IMSK1	15:8	FNADGVCNA	DVINITOM	LINEVERNA	SQIM	PSTCM	TXCOLM	TXJABM	TSSIM
		7:0	EMPCYCM	RXINTOM	UNEXPBM	BCNBFTOM	UNCRSM	PLCASYMM WKEMDIM	ESDERRM	DEC5BM
0x1D	IMSK2	15:8 7:0		ОТМ	IWDTOM			VVKEIVIDIIVI	WKEWIM	UV33M
0x1F	Reserved	7.0		OTIVI	IVVDICIVI					
		15:8								
0x20	CTRCTRL	7:0							TOCTRE	BCNCTRE
0x22										
	Reserved									
0x23										
0x24	TOCNTH	15:8				TOCNT				
UNE I	10011111	7:0				TOCNT				
0x25	TOCNTL	15:8				TOCN				
		7:0				TOCN				
0x26	BCNCNTH	15:8				BCNCN				
		7:0				BCNCN [*]				
0x27	BCNCNTL	15:8 7:0				BCNCN				
0x29		7.0				BCNC	VI[7:0]			
0829	Reserved									
0x2F	Reserved									
		15:8				ID1[7:0]			
0x30	MULTID0	7:0				ID2[
0.21	MULTID1	15:8				ID3[
0x31	MULTID1	7:0				ID4[[7:0]			
0x32	MULTID2	15:8				ID5[[7:0]			
0,52	WIOLIIDZ	7:0				ID6[[7:0]			
0x33	MULTID3	15:8				ID7[
		7:0				ID8[[7:0]			
0x35	Reserved	15.0					D.T. 03			
0x36	PRSSTS	15:8				MAXII	[0:1]ט[
0x38		7:0								
	Reserved									
 0x3C	Neser veu									
UNSC.										

cont	inuea								
ddress	Name	Bit Pos.	7	6	5	4	3	2	1
0x3D	PRTMGMT2	15:8			MIRXWDEN	PRIWDEN	MITXWDEN		
UNDD	TRTWGWTZ	7:0							
0x3E	IWDTOH	15:8					JT[31:24]		
		7:0					JT[23:16]		
0x3F	IWDTOL	15:8					JT[15:8]		
		7:0				TIMEO	UT[7:0]		
0x40	TXMCTL	15:8 7:0	TXPMDET					MACTVTCE	TXME
		15:8	TAPINIDET					MACTXTSE	I AIVIE
0x41	TXMPATH	7:0				ТУМРА	T[23:16]		
		15:8					T[15:8]		
0x42	TXMPATL	7:0					AT[7:0]		
		15:8				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	[0]		
0x43	TXMMSKH	7:0				TXMMS	K[23:16]		
		15:8					K[15:8]		
0x44	TXMMSKL	7:0					SK[7:0]		
0.45	TANCE	15:8							
0x45	TXMLOC	7:0					TXLOCAT	TION[5:0]	
0x47									
	Reserved								
0x48									
0x49	TXMDLY	15:8	TXMDLYEN					T.	XMPKTDLY[10:8]
	INVIDEI	7:0				TXMPKT	DLY[7:0]		
0x4B									
0x4F									
0x50	RXMCTL	15:8		-145 : ::					
-		7:0		RXPMDET					RXME
0x51	RXMPATH	15:8				B) 2 12 1	T122.4.53		
		7:0					T[23:16]		
0x52	RXMPATL	15:8					AT[15:8]		
		7:0				RXMP	AT[7:0]		
0x53	RXMMSKH	15:8				DVA 44 40	V[22,47]		
		7:0					K[23:16]		
0x54	RXMMSKL	15:8					SK[15:8]		
		7:0 15:8				KXIVIIVI	SK[7:0]		
0x55	RXMLOC	7:0					DVI OCAT	TIONITE : 01	
0x57		7.0					RXLOCAT	[U.C]VIOI	
	Reserved								
 0x58	ixesei veu								
		15:8	RXMDLYEN					R	XMPKTDLY[10:8]
0x59	RXMDLY	7:0	-			RXMPKT	DLY[7:0]		
0x5B									
	Reserved								
0x5F									
	CDCCDTIIII	15:8							
0x60	CBSSPTHH	7:0						STOPTH	IR[19:16]
Ove 1	CDCCDTIII	15:8				STOPTI	HR[15:8]		
0x61	CBSSPTHL	7:0				STOPT	HR[7:0]		
0x62	CBSSTTHH	15:8							
UXUZ	СВЭЭППП	7:0						STARTTH	HR[19:16]
0x63	CBSSTTHL	15:8				STARTT	HR[15:8]		
COAU	CDSSTIFIL	7:0					HR[7:0]		
0x64	CBSSLPCTL	15:8				FALLS	LP[7:0]		
0.004	CDSSEPCIE	7:0				RISES	LP[7:0]		
0x65	CBSTPLMTH	15:8							
0,003	CDSTFLINITH	7:0						TOPLIM	IT[19:16]
		15:8				TOPLIN	IIT[15:8]		
0x66	CBSTPLMTL	7:0							

conti	inued									
Address	Name	Bit Pos.	7	6	5	4	3	2	1	0
		15:8	<u> </u>							·
0x67	CBSBTLMTH	7:0						BOTLIM	IT[19:16]	
0x68	CBSBTLMTL	15:8				BOTLIN	IIT[15:8]			
0000	CB3B1LW11L	7:0				BOTLIN	ЛIT[7:0]			
0x69	CBSCRCTRH	15:8								
0/103		7:0						CREDITO	TR[19:16]	
0x6A	CBSCRCTRL	15:8				CREDITO				
		7:0 15:8				CREDIT	CTR[7:0]			FCCDDC[7]
0x6B	CBSCTRL	7:0				ECCRDS[6:0]				ECCRDS[7] CBSEN
0x6D		7.0				ECCND3[0.0]				CDSEIN
	Reserved									
0x6F										
070	DI CACIADOTI	15:8								
0x70	PLCASKPCTL	7:0							TOSKPEN	
0x71	PLCATOSKP	15:8								
		7:0				TOSKPN	IUM[7:0]			
0x73	Reserved									
0x74	ACMACTL	15:8								
		7:0								ACMAEN
0x76	Reserved									
 0x7F	Reserved									
		15:8	SLPEN	WKINEN	MDIWKEN	SI PINH	DLY[1:0]			
0x80	SLPCTL0	7:0	32. 2.1	7777727		AL[3:0]	52.[0]			
		15:8								
0x81	SLPCTL1	7:0	WOPOL		WIPOL	WAKEIND	CLRWKI	MWKFWD	WKOFWDEN	MDIFWDEN
0x83										
	Reserved									
0x86										
0x87	CDCTL0	15:8	CDEN							
		7:0								
0x89	Reserved									
 0x9F	Reserved									
		15:8	SQIRST	SQIEN						
0xA0	SQICTL	7:0								
0xA1	SQISTS0	15:8								
UXAT	3013130	7:0	SQIERR	SQIVLD		SQIVAL[2:0]			SQIERRC[2:0]	
0xA3										
	Reserved									
0xA9		15.0						TOI	D[7:4]	
0xAA	SQICFG0	15:8 7:0		TOIL	D[3:0]			TOIL)[/. 4]	
0xAC		7.0		1011	J[J.U]					
	Reserved									
0xD4										
OVDE	ANIALOCE	15:8				UV33F	ΓM[7:0]			
0xD5	ANALOG5	7:0								
0xD7										
	Reserved									
0xC9FF		15.0				15	[7.0]			
0xCA00	MIDVER	15:8 7:0					[7:0] [7:0]			
		15:8	EN	RST		VER	[7.0]			
0xCA01	PLCA_CTRL0	7:0	LIN	I/OI						
		15:8				NCN'	Γ[7:0]			
0xCA02	PLCA_CTRL1	7:0				ID[
0,000	DLCA CTC	15:8	PST							
0xCA03	PLCA_STS	7:0								

conti	continued									
Address	Name	Bit Pos.	7	6	5	4	3	2	1	0
0xCA04	PLCA_TOTMR	15:8								
UXCAU4	PLCA_TOTIVIK	7:0	TOTMR[7:0]							
0xCA05	PLCA_BURST	15:8				MAXB	C[7:0]			
UXCAUS		7:0				BTM	R[7:0]			

Related Links

1.3. Register Bit Types

11.5.1 Control 1 Register

Name: CTRL1 Address: 0x0010

Bit	15	14	13	12	11	10	9	8
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
					IWDE		DIGLBE	
Access	RO	RO	RO	RO	R/W	RO	R/W	RO
Reset	0	0	0	0	0	0	0	0

Bit 3 - IWDE Inactivity Watchdog Enable

When set, this bit enables the internal MII and PHY register access inactivity watchdog.

Value	Description
0	Inactivity watchdog disabled
1	Inactivity watchdog enabled

Bit 1 – DIGLBE Digital Loopback Enable Enables a digital loopback from the differential Manchester encoder to the decoder.

	- · · · · · · · · · · · · · · · · · · ·
Value	Description
0	Normal operation
1	Digital loopback enabled

11.5.2 Status 1 Register

Name: STS1 Address: 0x0018

Bit	15	14	13	12	11	10	9	8
				SQI	PSTC	TXCOL	TXJAB	TSSI
Access	RO	RO	RO	RC	RC	RC	RC	RC
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	EMPCYC	RXINTO	UNEXPB	BCNBFTO	UNCRS	PLCASYM	ESDERR	DEC5B
Access	RC	RC	RC	RC	RC	RC	RC	RC
Reset	0	0	0	0	0	0	0	0

Bit 12 - SQI Signal Quality Indication Status

This bit is set to indicate an SQI status change.

Value	Description
0	SQI status has not changed.
1	SQI status has changed.

Bit 11 - PSTC PLCA Status Changed

This bit is set to indicate that the PLCA Status (PST) bit has changed within the PLCA Status (PLCA_STS) register.

Value	Description
0	PLCA Status has not changed.
1	PLCA Status has changed.

Bit 10 - TXCOL Transmit Collision Status

Physical collision on the network was detected. This does not include logical collisions due to normal operation of PLCA.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
Value	Description	
0	No collision detected during transmit	
1	Collision detected during transmit	

Bit 9 - TXJAB Transmit Jabber Status

This bit indicates the occurrence of a transmit jabber condition. A jabber condition occurs when the PHY detects that the PCS has remained in the transmit state longer than 2 ms. When a jabber condition is detected, the transmitter is disabled for the duration of 16 ms.

Value	Description
0	No transmit jabber detected
1	Transmit jabber detected

Bit 8 - TSSI Time Synchronization Service Interface Status

This bit is set when the TSSI has indicated the transmission or reception of an Ethernet packet.

Value	Description
0	No transmitted or received frames indicated
1	A transmitted or received frame has been indicated

Bit 7 - EMPCYC PLCA Empty Cycle Status

This bit indicates the detection of an empty PLCA bus cycle. An empty bus cycle occurs when the node detects no transmissions in any of the possible transmit opportunities between two successive BEACONs.

Value	Description			

Value	Description
0	An empty PLCA cycle has not been detected
1	An empty PLCA cycle has been detected

Bit 6 - RXINTO Receive in Transmit Opportunity

This bit indicates the detection of another node transmitting in this node's local assigned transmit opportunity. This could indicate multiple nodes being assigned the same Local ID.

Value	Description
0	Another node has not been detected transmitting in this node's TO
1	Another node has been detected transmitting in this node's TO

Bit 5 - UNEXPB Unexpected BEACON Received

When configured as the PLCA coordinator in charge of transmitting the periodic coordinating BEACONs, this bit indicates the detection of an unexpected BEACON on the segment. This condition may be due to the configuration of multiple PLCA coordinators on the segment.

Value	Description
0	Another node on the segment has not been detected transmitting a BEACON
1	Another node on the segment has been detected transmitting a BEACON

Bit 4 - BCNBFTO BEACON Received Before Transmit Opportunity

This bit indicates the detection of a BEACON before the node's assigned transmit opportunity. This condition could indicate the configuration of multiple PLCA coordinators on the segment. Other conditions that may cause this to occur include a PLCA coordinator with an incorrectly configured maximum node count resulting in a PLCA cycle that is too short, or a PLCA Local ID that is configured beyond the PLCA cycle.

Value	Description
0	A BEACON has not been detected before local transmit opportunity
1	A BEACON was detected before local transmit opportunity

Bit 3 - UNCRS Unexpected Carrier Sense

When operating in ACMA mode, this bit will indicate carrier sense during this PHY's transmit slot when ACMA is asserted.

Value	Description
0	No Carrier has been sensed during PHY's ACMA time slot
1	Carrier has been sensed during PHY's ACMA time slot

Bit 2 - PLCASYM PLCA Symbols Detected

This bit indicates the detection of PLCA BEACON symbols when PLCA is not enabled. This condition may indicate the local node is operating with PLCA disabled on a segment with PLCA enabled nodes.

Value	Description
0	PLCA BEACON symbols have not been detected from the network with PLCA disabled
1	PLCA BEACON symbols have been detected from the network with PLCA with disabled

Bit 1 - ESDERR End-of-Stream Delimiter Error

This bit indicates the reception of an End-of-Stream Delimiter Error (ESDERR) or End-of-Stream Jabber (ESDJAB) symbol.

January (1997) (1997) (1997)	
Value	Description
0	ESD error has not been detected
1	ESD error has been detected

Bit 0 - DEC5B 5B Decode Error

This bit indicates the 5B decoder encountered an unknown or reserved 5B codeword that could not be decoded.

Value	Description
0	5B decoder error has not occurred

ValueDescription15B decode error has occurred

11.5.3 Status 2 Register

Name: STS2 **Address:** 0x0019

Bit	15	14	13	12	11	10	9	8
						WKEMDI	WKEWI	UV33
Access	RO	RO	RO	RO	RO	RC	RC	RC
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
		OT	IWDTO					
Access	RO	RC	RC	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0

Bit 10 - WKEMDI MDI Wake-up Status

This indicates wake-up from MDI energy.

Value	Description
0	Wake from MDI has not occurred
1	Wake from MDI has occurred

Bit 9 - WKEWI WAKE_IN Wake-up Status

This indicates wake-up from WAKE_IN pin.

Value	Description
0	Wake from WAKE_IN has not occurred
1	Wake from WAKE_IN has occurred

Bit 8 - UV33 3.3V supply Under-Voltage Status

Set when an under-voltage condition has been detected on the 3.3V supply.

٧	alue	Description
C)	3.3V supply under-voltage condition has not been detected
1		3.3V supply under-voltage condition has been detected

Bit 6 - OT Over-Temperature Error Status

Value	Description
0	No over-temperature error detected
1	Over-temperature error detected

Bit 5 - IWDTO Inactivity Watchdog Timeout Status

This bit is set to indicate a timeout of the inactivity watchdog has occurred.

Value	Description
0	Inactivity watchdog timer has not expired
1	Inactivity watchdog timer has expired

11.5.4 Status 3 Register

Name: STS3 Address: 0x001A

Bit	15	14	13	12	11	10	9	8
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				ERRTO	ID[7:0]			
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0

Bits 7:0 - ERRTOID[7:0] PLCA Error Transmit Opportunity ID

This field captures the local PLCA current transmit opportunity counter ID when any unmasked interrupt status bit in the Status 1 register is set.

Note: This field is only accurate if one unmasked interrupt status bit is set in the Status 1 register. If multiple interrupt status bits are set, then this field represents the transmit opportunity for only the most recent interrupt status bit.

11.5.5 Interrupt Mask 1 Register

Name: IMSK1 Address: 0x001C

Bit	15	14	13	12	11	10	9	8
				SQIM	PSTCM	TXCOLM	TXJABM	TSSIM
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1
Bit	7	6	5	4	3	2	1	0
	EMPCYCM	RXINTOM	UNEXPBM	BCNBFTOM	UNCRSM	PLCASYMM	ESDERRM	DEC5BM
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

Bit 12 – SQIM Signal Quality Indication Interrupt Mask

When clear, this bit will enable assertion of the PHY Interrupt status (PHYINT) in the OPEN Alliance Status 0 (OA_STATUS0) register when the Signal Quality Indication (SQI) status bit is set.

Value	Description	Ì	
0	SQI status interrupt enabled.		
1	SQI status interrupt disabled.		

Bit 11 - PSTCM PLCA Status Changed Interrupt Mask

When clear, this bit will enable assertion of the PHY Interrupt status (PHYINT) in the OPEN Alliance Status 0 (OA STATUS0) register when the PLCA Status Changed (PSTC) status bit is set.

Value	Description		
0	PLCA status change interrupt enabled.		
1	PLCA status change interrupt disabled.		

Bit 10 - TXCOLM Transmit Collision Interrupt Mask

When clear, this bit will enable assertion of the PHY Interrupt status (PHYINT) in the OPEN Alliance Status 0 (OA STATUS0) register when the Transmit Collision (TXCOL) status bit is set.

2	(0.120.0.000) . 20.000
Value	Description
0	Transmit collision interrupt enabled
1	Transmit collision interrupt disabled

Bit 9 - TXJABM Transmit Jabber Interrupt Mask

When clear, this bit will enable assertion of the PHY Interrupt status (PHYINT) in the OPEN Alliance Status 0 (OA STATUS0) register when the Transmit Jabber (TXJAB) status bit is set.

	· = , 0	, , ,	
Value	Description		
0	Transmit jabber interrupt enabled		
1	Transmit jabber interrupt disabled		

Bit 8 - TSSIM Time Synchronization Service Interface Interrupt Mask

When clear, this bit will enable assertion of the PHY Interrupt status (PHYINT) in the OPEN Alliance Status 0 (OA_STATUS0) register when the Time Synchronization Service Interface (TSSI) status bit is set.

Value	Description
0	TSSI interrupt enabled
1	TSSI interrupt disabled

Bit 7 - EMPCYCM PLCA Empty Cycle Interrupt Mask

When clear, this bit will enable assertion of the PHY Interrupt status (PHYINT) in the OPEN Alliance Status 0 (OA_STATUS0) register when the PLCA Empty Cycle (EMPCYC) status bit is set.

Value	Description
0	PLCA empty cycle interrupt enabled
1	PLCA empty cycle interrupt disabled

Bit 6 - RXINTOM Receive in Transmit Opportunity Interrupt Mask

When clear, this bit will enable assertion of the PHY Interrupt status (PHYINT) in the OPEN Alliance Status 0 (OA_STATUS0) register when the Receive in Transmit Opportunity (RXINTO) status bit is set.

Value	Description
0	Receive in transmit opportunity interrupt enabled
1	Receive in transmit opportunity interrupt disabled

Bit 5 - UNEXPBM Unexpected BEACON Received Interrupt Mask

When clear, this bit will enable assertion of the PHY Interrupt status (PHYINT) in the OPEN Alliance Status 0 (OA_STATUS0) register when the Unexpected BEACON Received (UNEXPB) status bit is set.

Value	Description
0	Unexpected BEACON received interrupt enabled
1	Unexpected BEACON received interrupt disabled

Bit 4 - BCNBFTOM BEACON Received Before Transmit Opportunity Interrupt Mask

When clear, this bit will enable assertion of the PHY Interrupt status (PHYINT) in the OPEN Alliance Status 0 (OA_STATUS0) register when the BEACON Received Before Transmit Opportunity (BCNBFTO) status bit is set.

Value	Description
0	BEACON received before transmit opportunity interrupt enabled
1	BEACON received before transmit opportunity interrupt disabled

Bit 3 - UNCRSM Unexpected Carrier Sense Interrupt Mask

When clear, this bit will enable assertion of the PHY Interrupt status (PHYINT) in the OPEN Alliance Status 0 (OA_STATUS0) register when the Unexpected Carrier Sense (UNCRS) status bit is set.

	•	_	,	U		,	,	
Value		Description						
0		Unexpected	l car	rier sense	interrupt enabled			
1		Unexpected	l car	rier sense	interrupt disabled			

Bit 2 - PLCASYMM PLCA Symbols Detected Interrupt Mask

When clear, this bit will enable assertion of the PHY Interrupt status (PHYINT) in the OPEN Alliance Status 0 (OA_STATUS0) register when the PLCA Symbols Detected (PLCASYM) status bit is set.

Value	Description
0	PLCA BEACON symbols detected interrupt enabled
1	PLCA BEACON symbols detected interrupt disabled

Bit 1 – ESDERRM End-of-Stream Delimiter Error Interrupt Mask

When clear, this bit will enable assertion of the PHY Interrupt status (PHYINT) in the OPEN Alliance Status 0 (OA STATUS0) register when the End-of-Stream Delimiter Error (ESDERR) status bit is set.

Value	Description				
0	ESD error interrupt enabled				
1	ESD error interrupt disabled				

Bit 0 - DEC5BM 5B Decode Error Interrupt Mask

When clear, this bit will enable assertion of the PHY Interrupt status (PHYINT) in the OPEN Alliance Status 0 (OA_STATUS0) register when the 5B Decoder Error (DEC5B) status is set.

Value	Description
0	5B decode error interrupt enabled
1	5B decode error interrupt disabled

11.5.6 Interrupt Mask 2 Register

Name: IMSK2 Address: 0x001D

Bit	15	14	13	12	11	10	9	8
						WKEMDIM	WKEWIM	UV33M
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	0	0	0	1
Bit	7	6	5	4	3	2	1	0
		OTM	IWDTOM					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

Bit 10 - WKEMDIM MDI Wakeup Interrupt Mask

When clear, this bit will enable assertion of the PHY Interrupt status (PHYINT) in the OPEN Alliance Status 0 (OA STATUS0) register when the MDI Wake-up (WKEMDI) status bit is set.

Value	Description
0	MDI wake-up interrupt enabled
1	MDI wake-up interrupt disabled

Bit 9 - WKEWIM WAKE_IN Wake-up Interrupt Mask

When clear, this bit will enable assertion of the PHY Interrupt status (PHYINT) in the OPEN Alliance Status 0 (OA STATUS0) register when the WAKE IN Wake-up (WKEWI) status bit is set.

Value	Description
0	WAKE_IN wake-up interrupt enabled
1	WAKE_IN wake-up interrupt disabled

Bit 8 - UV33M 3.3V supply Under-Voltage Interrupt Mask

When clear, this bit will enable assertion of the PHY Interrupt status (PHYINT) in the OPEN Alliance Status 0 (OA_STATUS0) register when the 3.3V supply Under-Voltage (UV33) status bit is set.

Juacas	o (o, t_s), it oso, register when the sist supply officer voltage (o vss) status sit is set.
Value	Description
0	3.3V supply under-voltage interrupt enabled
1	1.8V supply under-voltage interrupt disabled

Bit 6 - OTM Over-Temperature Error Interrupt Mask

When clear, this bit will enable assertion of the PHY Interrupt status (PHYINT) in the OPEN Alliance Status 0 (OA_STATUS0) register when the Over-Temperature Error (OT) status bit is set.

Value	Description
0	Over-temperature error interrupt enabled
1	Over-temperature error interrupt disabled

Bit 5 - IWDTOM Inactivity Watchdog Timeout Interrupt Mask

When clear, this bit will enable assertion of the PHY Interrupt status (PHYINT) in the OPEN Alliance Status 0 (OA_STATUS0) register when the Inactivity Watchdog Timeout (IWDTO) status bit is set.

Value	Description
0	Inactivity watchdog timeout interrupt enabled
1	Inactivity watchdog timeout interrupt disabled

11.5.7 Counter Control Register

Name: CTRCTRL Address: 0x0020

Bit	15	14	13	12	11	10	9	8
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
							TOCTRE	BCNCTRE
Access	RO	RO	RO	RO	RO	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 1 - TOCTRE Transmit Opportunity Counter Enable

Enables and disables the PLCA transmit opportunity counter in the Transmit Opportunity Count (High) and Transmit Opportunity Count (Low) registers.

Value	Description
0	PLCA transmit opportunity counter is disabled
1	PLCA transmit opportunity counter is enabled

Bit 0 - BCNCTRE PLCA BEACON Counter Enable

Enables and disables the PLCA BEACON counter in BEACON Count (High) and BEACON Count (Low) registers.

Value	Description
0	PLCA BEACON counter is disabled
1	PLCA BEACON counter is enabled

11.5.8 Transmit Opportunity Count (High)

Name: TOCNTH Address: 0x0024

Bit	15	14	13	12	11	10	9	8
				TOCNT	[31:24]			
Access	RC	RC	RC	RC	RC	RC	RC	RC
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				TOCNT	[23:16]			
Access	RC	RC	RC	RC	RC	RC	RC	RC
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - TOCNT[31:16] Transmit Opportunity Count

This field maintains the upper 16 bits of the 32-bit count of the number of PLCA transmit opportunities the device may have utilized since the previous read.

Note: When this register is read, the contents of the 32-bit transmit opportunity counter will be latched into the high and low counter register pair. The high counter register will be updated prior to be driven to the station management entity.

Note: The 32-bit counter will be reset when the contents are latched into the high and low counter register pair.

11.5.9 Transmit Opportunity Count (Low)

Name: TOCNTL Address: 0x0025

Bit	15	14	13	12	11	10	9	8
				TOCN	T[15:8]			
Access	RC	RC	RC	RC	RC	RC	RC	RC
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				TOCN	IT[7:0]			
Access	RC	RC	RC	RC	RC	RC	RC	RC
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - TOCNT[15:0] Transmit Opportunity Count

This field maintains the lower 16 bits of the 32-bit count of the number of PLCA transmit opportunities the device may have utilized since the previous read.

Note: The contents of this register will be latched upon reading of the Transmit Opportunity Count (High) register.

11.5.10 BEACON Count (High)

Name: BCNCNTH Address: 0x0026

Bit	15	14	13	12	11	10	9	8
				BCNCN	T[31:24]			
Access	RC	RC	RC	RC	RC	RC	RC	RC
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				BCNCN [*]	T[23:16]			
Access	RC	RC	RC	RC	RC	RC	RC	RC
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - BCNCNT[31:16] Beacon Count

This field maintains the upper 16 bits of the 32-bit counter of PLCA beacons received or transmitted since the previous read.

Note: When this register is read, the contents of the 32-bit beacon counter will be latched into the high and low counter register pair. The high counter register will be updated prior to be driven to the station management entity.

Note: The 32-bit beacon counter will be reset when the contents are latched into the high and low counter register pair.

11.5.11 BEACON Count (Low)

Name: BCNCNTL Address: 0x0027

Bit	15	14	13	12	11	10	9	8
				BCNCN	IT[15:8]			
Access	RC	RC	RC	RC	RC	RC	RC	RC
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				BCNC	NT[7:0]			
Access	RC	RC	RC	RC	RC	RC	RC	RC
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - BCNCNT[15:0] Beacon Count

This field maintains the lower 16 bits of the 32-bit counter of PLCA beacons received or transmitted since the previous read.

Note: The contents of this register will be latched upon reading of the BEACON Count (High) register.

11.5.12 PLCA Multiple ID 0 Register

Name: MULTID0 Address: 0x0030

Bit	15	14	13	12	11	10	9	8
				ID1[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				ID2[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:8 - ID1[7:0]

When this field is neither 0x00 or 0xFF and PLCA is enabled, the node will transmit when its transmit opportunity counter equals the value in this field.

Value	Description
0x00, 0xFF	Value ignored
0x01-0xFE	Additional LocalID (transmit opportunity) assigned to node

Bits 7:0 - ID2[7:0]

Value	Description
0x00, 0xFF	Value ignored
0x01-0xFE	Additional LocalID (transmit opportunity) assigned to node

11.5.13 PLCA Multiple ID 1 Register

Name: MULTID1 Address: 0x0031

Bit	15	14	13	12	11	10	9	8
				ID3[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				ID4[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:8 - ID3[7:0]

When this field is neither 0x00 or 0xFF and PLCA is enabled, the node will transmit when its transmit opportunity counter equals the value in this field.

Value	Description
0x00, 0xFF	Value ignored
0x01-0xFE	Additional LocalID (transmit opportunity) assigned to node

Bits 7:0 - ID4[7:0]

Value	Description
0x00, 0xFF	Value ignored
0x01-0xFE	Additional LocalID (transmit opportunity) assigned to node

11.5.14 PLCA Multiple ID 2 Register

Name: MULTID2 Address: 0x0032

Bit	15	14	13	12	11	10	9	8
				ID5[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				ID6[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:8 - ID5[7:0]

When this field is neither 0x00 or 0xFF and PLCA is enabled, the node will transmit when its transmit opportunity counter equals the value in this field.

	opportainty countries equals and raide in this needs						
Value	Description						
0x00, 0xFF	Value ignored						
0x01-0xFE	Additional LocalID (transmit opportunity) assigned to node						

Bits 7:0 - ID6[7:0]

Value	Description
0x00, 0xFF	Value ignored
0x01-0xFE	Additional LocalID (transmit opportunity) assigned to node

11.5.15 PLCA Multiple ID 3 Register

Name: MULTID3 Address: 0x0033

Bit	15	14	13	12	11	10	9	8		
	ID7[7:0]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
	ID8[7:0]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 15:8 - ID7[7:0]

When this field is neither 0x00 or 0xFF and PLCA is enabled, the node will transmit when its transmit opportunity counter equals the value in this field.

appartainty to arrest a qualitative target in a management and						
Value	Description					
0x00, 0xFF	Value ignored					
0x01-0xFE	Additional LocalID (transmit opportunity) assigned to node					

Bits 7:0 - ID8[7:0]

Value	Description
0x00, 0xFF	Value ignored
0x01-0xFE	Additional LocalID (transmit opportunity) assigned to node

11.5.16 PLCA Reconciliation Sublayer Status

Name: PRSSTS Address: 0x0036

Bit	15	14	13	12	11	10	9	8		
	MAXID[7:0]									
Access	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0		
5	_		_		•	•	4			
Bit _	/	6	5	4	3	2	1	0		
Access	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0		

Bits 15:8 - MAXID[7:0] Maximum ID

This field contains the maximum PLCA transmit opportunity ID count in the previous PLCA bus cycle. By monitoring this field, the PLCA follower station applications may detect the number of transmit opportunities the PLCA coordinator allows between BEACONs.

11.5.17 Port Management 2

Name: PRTMGMT2 Address: 0x003D

Bit	15	14	13	12	11	10	9	8
			MIRXWDEN	PRIWDEN	MITXWDEN			
Access	RO	RO	R/W	R/W	R/W	RO	RO	RO
Reset	0	0	1	0	1	0	0	0
Bit	7	6	5	4	3	2	1	0
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0

Bit 13 - MIRXWDEN Media Interface Receive Watchdog Enable

When set, packets received from the network and output through the internal MII to the MAC and SPI will reset the inactivity watchdog timer.

Value	Description
0	Media interface receive inactivity watchdog disabled
1	Media interface receive watchdog enabled

Bit 12 - PRIWDEN PHY Register Inactivity Watchdog Enable

When set, PHY register accesses by the SPI host will reset the inactivity watchdog timer.

Value	Description	
0	PHY register access inactivity watchdog disabled	
1	PHY register access inactivity watchdog enabled	

Bit 11 - MITXWDEN Media Interface Transmit Watchdog Enable

When set, packets received from the SPI and MAC through the internal MII and output on the network will reset the inactivity watchdog timer.

Value	Description
0	Media interface transmit inactivity watchdog disabled
1	Media interface transmit inactivity watchdog enabled

11.5.18 Inactivity Watchdog Timeout (High)

Name: **IWDTOH** Address: 0x003E

Bit	15	14	13	12	11	10	9	8			
	TIMEOUT[31:24]										
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
	TIMEOUT[23:16]										
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	1	0	0	1	1	0	0	0			

Bits 15:0 – TIMEOUT[31:16] Inactivity Watchdog Timeout

This field configures the upper 16 bits of the 32-bit integrated PHY/MAC MII and PHY register access inactivity watchdog timeout in increments of 200 ns.

Note: The default value of 0x00989680 results in a timeout of 2 seconds.

11.5.19 Inactivity Watchdog Timeout (Low)

Name: **IWDTOL** Address: 0x003F

Bit	15	14	13	12	11	10	9	8		
	TIMEOUT[15:8]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	1	0	0	1	0	1	1	0		
Bit	7	6	5	4	3	2	1	0		
				TIMEO	UT[7:0]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	1	0	0	0	0	0	0	0		

Bits 15:0 – TIMEOUT[15:0] Inactivity Watchdog Timeout

This field configures the lower 16 bits of the 32-bit integrated PHY/MAC MII and PHY register access inactivity watchdog timeout in increments of 200 ns.

Note: The default value of 0x00989680 results in a timeout of 2 seconds.

11.5.20 Transmit Match Control Register

Name: TXMCTL Address: 0x0040

Bit	15	14	13	12	11	10	9	8
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	TXPMDET					MACTXTSE	TXME	
Access	RC	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 7 - TXPMDET Transmit Packet Match Detected

Value	Description
0	A matching packet has not been transmitted
1	A matching packet has been transmitted

Bit 2 - MACTXTSE MAC Transmit Time Stamp Enable

When enabled, transmitted packets will be compared. When a match is detected, a logical collision will be asserted to the MAC delaying transmission until the next PLCA transmit opportunity. **Note:** This bit cannot be enabled at the same time as the TXME bit.

Value	Description
0	Transmit MAC gPTP disabled. Normal operation.
1	Transmit MAC gPTP enabled. Matching transmit packets will delay transmission until the next PLCA transmit opportunity.

Bit 1 - TXME Transmit Match Enable

When enabled, transmit packets will be compared. When a match is detected, the TXPI pin will be asserted as configured.

Note: This bit cannot be enabled at the same time as the MACTXTSE bit.

Value	Description
0	Transmitted packets are not compared. Normal operation.
1	Transmitted packets will be compared and TXPI asserted on a match.

11.5.21 Transmit Match Pattern (High) Register

Name: TXMPATH Address: 0x0041

Bit	15	14	13	12	11	10	9	8			
Access	RO	RO	RO	RO	RO	RO	RO	RO			
Reset	0	0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
	TXMPAT[23:16]										
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	1	0	0	0	1	0	0	0			

Bits 7:0 – TXMPAT[23:16] Transmit Match Pattern (High) Upper 8 bits of the 24-bit transmit match pattern.

11.5.22 Transmit Match Pattern (Low) Register

Name: TXMPATL Address: 0x0042

Bit	15	14	13	12	11	10	9	8			
	TXMPAT[15:8]										
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	1	1	1	1	0	1	1	1			
Bit	7	6	5	4	3	2	1	0			
	TXMPAT[7:0]										
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	1	0	0	0	0			

Bits 15:0 – TXMPAT[15:0] Transmit Match Pattern (Low) Lower 16 bits of the 24-bit transmit match pattern.

11.5.23 Transmit Match Mask (High) Register

Name: TXMMSKH Address: 0x0043

Bit	15	14	13	12	11	10	9	8			
Access	RO	RO	RO	RO	RO	RO	RO	RO			
Reset	0	0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
	TXMMSK[23:16]										
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			

Bits 7:0 - TXMMSK[23:16] Transmit Match Mask (High)

Upper 8 bits of the 24-bit transmit match mask. A '1' in any bit will cause the corresponding bit in the Transmit Match Pattern field to be ignored. A '0' will cause the corresponding bit in the Transmit Match Pattern field to be compared.

Note: Triggering of transmit packets matching at the Start-of-Frame Delimiter (SFD) requires that all bits within the Transmit Match Pattern field be disabled from the compare by writing the Transmit Match Mask registers to 0xFFFFFFF. Additionally, the Transmit Match Location must be configured to 0x0000.

11.5.24 Transmit Match Mask (Low) Register

Name: TXMMSKL Address: 0x0044

Bit	15	14	13	12	11	10	9	8			
	TXMMSK[15:8]										
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
	TXMMSK[7:0]										
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			

Bits 15:0 - TXMMSK[15:0] Transmit Match Mask (Low)

Lower 16 bits of the 24-bit transmit match mask. A '1' in any bit will cause the corresponding bit in the Transmit Match Pattern field to be ignored. A '0' will cause the corresponding bit in the Transmit Match Pattern field to be compared.

Note: Triggering of transmit packets matching at the Start-of-Frame Delimiter (SFD) requires that all bits within the Transmit Match Pattern field be disabled from the compare by writing the Transmit Match Mask registers to 0xFFFFFFF. Additionally, the Transmit Match Location must be configured to 0x0000.

11.5.25 Transmit Match Location Register

Name: TXMLOC Address: 0x0045

Bit	15	14	13	12	11	10	9	8			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
				TXLOCATION[5:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	1	1	1	1	0			

Bits 5:0 - TXLOCATION[5:0] Transmit Match Location

Location in nibbles within the Ethernet packet relative to, but not including, the Start-of-Frame Delimiter (SFD) at which the pattern matcher will activate. The six previous transmitted nibbles relative to (but not including) the transmit match location nibble will be compared. Valid range is from 0×00 to $0 \times 3D$

Note: Triggering of transmit packets matching at the Start-of-Frame Delimiter (SFD) requires that the Transmit Match Location be configured to 0×00 . Additionally, all bits within the Transmit Match Pattern field must be disabled from the compare by writing the Transmit Match Mask registers to $0 \times \text{FFFFFF}$.

11.5.26 Transmit Matched Packet Delay Register

Name: TXMDLY Address: 0x0049

Bit	15	14	13	12	11	10	9	8			
	TXMDLYEN					T	MPKTDLY[10:	[8]			
Access	R/W	RO	RO	RO	RO	RO	RO	RO			
Reset	0	0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
	TXMPKTDLY[7:0]										
Access	RO	RO	RO	RO	RO	RO	RO	RO			
Reset	0	0	0	0	0	0	0	0			

Bit 15 - TXMDLYEN Transmit Matched Packet Delay Measurement Enable

When set, this bit enables the measurement of matched transmit packet delays through the PHY.

Value	Description
0	Transmit packet delay measurement is disabled
1	Transmit packet delay measurement is enabled

Bits 10:0 - TXMPKTDLY[10:0] Transmit Matched Packet Delay

This field contains the delay of the previously matched transmit packet through the PHY. The delay is measured from the assertion of TXEN to the end of the transmission of the first SSD symbol ("H") of the packet preamble onto the line units of 40 ns. When PLCA is enabled, the measured delay includes the delay of the packet through the PLCA elastic buffer.

Value	Description
0x000	0 ns
0x001	40 ns
0x7FF	81.880 µs

11.5.27 Receive Match Control Register

Name: RXMCTL Address: 0x0050

Bit	15	14	13	12	11	10	9	8
Access	RO	RO	RO	RO	RO	RO	RO	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
		RXPMDET					RXME	
Access	R/W	RC	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 6 - RXPMDET Receive Packet Match Detected

Value	Description
0	A matching packet has not been received
1	A matching packet has been received

Bit 1 - RXME Receive Packet Match Enable

When enabled, receive packets will be compared. When a match is detected, RXPI pin will be asserted as configured.

	0
Value	Description
0	Received packets are not compared. Normal operation.
1	Received packets will be compared and RXPI asserted on a match.

11.5.28 Receive Match Pattern (High) Register

Name: RXMPATH Address: 0x0051

Bit	15	14	13	12	11	10	9	8
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				RXMPA	Γ[23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	0	0	0	1	0	0	0

Bits 7:0 – RXMPAT[23:16] Receive Match Pattern (High) Upper 8 bits of the 24-bit receive match pattern.

11.5.29 Receive Match Pattern (Low) Register

Name: RXMPATL Address: 0x0052

Bit	15	14	13	12	11	10	9	8
				RXMPA	T[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	0	1	1	1
Bit	7	6	5	4	3	2	1	0
				RXMPA	AT[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	1	0	0	0	0

Bits 15:0 - RXMPAT[15:0] Receive Match Pattern (Low) Lower 16 bits of the 24-bit receive match pattern.

11.5.30 Receive Match Mask (High) Register

Name: RXMMSKH Address: 0x0053

Bit	15	14	13	12	11	10	9	8
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				RXMMS	K[23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 7:0 - RXMMSK[23:16] Receive Match Mask (High)

Upper 8 bits of the 24-bit receive match mask. A '1' in any bit will cause the corresponding bit in the Receive Match Pattern field to be ignored. A '0' will cause the corresponding bit in the Receive Match Pattern field to be compared.

Note: Triggering of receive packets matching at the Start-of-Frame Delimiter (SFD) requires that all bits within the Receive Match Pattern field be disabled from the compare by writing the Receive Match Mask registers to 0xFFFFFFF. Additionally, the Receive Match Location must be configured to 0x0000.

11.5.31 Receive Match Mask (Low) Register

Name: RXMMSKL Address: 0x0054

Bit	15	14	13	12	11	10	9	8
				RXMMS	K[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				RXMM	SK[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - RXMMSK[15:0] Receive Match Mask (Low)

Lower 16 bits of the 24-bit receive match mask. A '1' in any bit will cause the corresponding bit in the Receive Match Pattern field to be ignored. A '0' will cause the corresponding bit in the Receive Match Pattern field to be compared.

Note: Triggering of receive packets matching at the Start-of-Frame Delimiter (SFD) requires that all bits within the Receive Match Pattern field be disabled from the compare by writing the Receive Match Mask registers to $0 \times FFFFFFF$. Additionally, the Receive Match Location must be configured to 0×0000 .

11.5.32 Receive Match Location Register

Name: RXMLOC Address: 0x0055

Bit	15	14	13	12	11	10	9	8		
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				RXLOCATION[5:0]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	1	1	1	1	0		

Bits 5:0 - RXLOCATION[5:0] Receive Match Location

Location in nibbles within the Ethernet packet relative to, but not including, the Start-of-Frame Delimiter (SFD) at which the pattern matcher will activate. The six previous received nibbles relative to (but not including) the receive match location nibble will be compared. Valid range is from 0×00 to $0 \times 3D$.

Note: Triggering of receive packets matching at the Start-of-Frame Delimiter (SFD) requires that the Receive Match Location be configured to 0×00 . Additionally, all bits within the Receive Match Pattern field must be disabled from the compare by writing the Receive Match Mask registers to $0 \times \text{FFFFFFF}$.

11.5.33 Receive Matched Packet Delay Register

Name: RXMDLY Address: 0x0059

Bit	15	14	13	12	11	10	9	8	
	RXMDLYEN					RXMPKTDLY[10:8]			
Access	R/W	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
				RXMPKT	DLY[7:0]				
Access	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	

Bit 15 - RXMDLYEN Receive Matched Packet Delay Measurement Enable

When set, this bit enables the measurement of matched receive packet delays through the PHY.

Value	Description
0	Receive packet delay measurement is disabled
1	Receive packet delay measurement is enabled

Bits 10:0 - RXMPKTDLY[10:0] Receive Matched Packet Delay

This field contains the delay of the previously matched receive packet through the PHY. The delay is measured from detection of the first SSD symbol ("H") of the packet preamble on the line to the assertion of Receive Data Valid at the media interface. The delay in this field is represented in units of 10 ns with an uncertainly of 10 ns.

Value	Description
0x000	0 ns
0x001	10 ns
0x010	20 ns
0x7FF	20.470 μs

11.5.34 Credit Based Shaper Stop Threshold (High) Register

Name: CBSSPTHH Address: 0x0060

Bit	15	14	13	12	11	10	9	8
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
						STOPTH	R[19:16]	
Access	RO	RO	RO	RO	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 3:0 - STOPTHR[19:16] Stop Threshold (High)

Upper 4 bits of the 20-bit credit stop threshold value. Once the credit counter drops below this threshold the device will assert CRS to hold off the MAC from transmitting.

11.5.35 Credit Based Shaper Stop Threshold (Low) Register

Name: CBSSPTHL Address: 0x0061

Bit	15	14	13	12	11	10	9	8	
	STOPTHR[15:8]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	1	0	1	1	0	0	1	1	
Bit	7	6	5	4	3	2	1	0	
				STOPT	HR[7:0]				
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	1	0	0	0	1	0	0	0	

Bits 15:0 - STOPTHR[15:0] Stop Threshold (Low)

Lower 16 bits of the 20-bit credit stop threshold value. Once the credit counter drops below this threshold the device will assert CRS to hold off the MAC from transmitting.

11.5.36 Credit Based Shaper Start Threshold (High) Register

Name: CBSSTTHH Address: 0x0062

Bit	15	14	13	12	11	10	9	8		
Access	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
						STARTTH	STARTTHR[19:16]			
Access	RO	RO	RO	RO	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 3:0 - STARTTHR[19:16] Start Threshold (High)

Upper 4 bits of the 20-bit credit start threshold value. Once the credit counter accumulates above this threshold the device will negate CRS to allow the MAC to transmit.

11.5.37 Credit Based Shaper Start Threshold (Low) Register

Name: **CBSSTTHL** Address: 0x0063

Bit	15	14	13	12	11	10	9	8					
	STARTTHR[15:8]												
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W					
Reset	1	0	1	1	0	0	1	1					
Bit	7	6	5	4	3	2	1	0					
				STARTT	HR[7:0]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W					
Reset	1	0	0	0	1	0	0	0					

Bits 15:0 – STARTTHR[15:0] Start Threshold (Low)

Lower 16 bits of the 20-bit credit start threshold value. Once the credit counter accumulates above this threshold the device will negate CRS to allow the MAC to transmit.

11.5.38 Credit Based Shaper Slope Control Register

Name: CBSSLPCTL Address: 0x0064

D:4	4 -	1.1	12	12	11	10	0	0					
Bit	15	14	13	12	11	10	9	8					
	FALLSLP[7:0]												
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W					
Reset	0	0	0	0	0	0	1	0					
Bit	7	6	5	4	3	2	1	0					
	RISESLP[7:0]												
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W					
Reset	0	0	0	1	1	1	1	0					

Bits 15:8 - FALLSLP[7:0] Falling Slope

Sets the rate at which credits are reduced when transmitting. Each time the PHY transmits the number of bytes configured by this parameter, the credit count will be decremented by one, until the bottom limit is reached.

Bits 7:0 - RISESLP[7:0] Rising Slope

Sets the rate at which credits are increased when receiving or idle. The PHY will count the number of received bytes or 800 ms periods of idle time. When the receive/idle byte count reaches the value in this parameter, the receive/idle byte count will be reset to 0 and the credit count will be incremented by one, until the top limit is reached.

11.5.39 Credit Based Shaper Top Limit (High) Register

Name: CBSTPLMTH Address: 0x0065

Bit	15	14	13	12	11	10	9	8		
Access	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
						TOPLIM	TOPLIMIT[19:16]			
Access	RO	RO	RO	RO	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	1		

Bits 3:0 - TOPLIMIT[19:16] Credit Top Limit (High)

Upper 4 bits of the 20-bit credit top limit threshold value. The credit counter will saturate at this value once it has been incremented to this limit.

11.5.40 Credit Based Shaper Top Limit (Low) Register

Name: CBSTPLMTL Address: 0x0066

Bit	15	14	13	12	11	10	9	8					
	TOPLIMIT[15:8]												
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W					
Reset	0	1	1	0	0	1	1	1					
Bit	7	6	5	4	3	2	1	0					
				TOPLIN	ИIT[7:0]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W					
Reset	0	0	0	1	0	0	0	0					

Bits 15:0 – TOPLIMIT[15:0] Credit Top Limit (Low)
Lower 16 bits of the 20-bit credit top limit threshold value. The credit counter will saturate at this value once it has incremented to this limit.

11.5.41 Credit Based Shaper Bottom Limit (High) Register

Name: CBSBTLMTH Address: 0x0067

Bit	15	14	13	12	11	10	9	8
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
						BOTLIM	T[19:16]	
Access	RO	RO	RO	RO	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 3:0 - BOTLIMIT[19:16] Credit Bottom Limit (High)

Upper 4 bits of the 20-bit credit bottom limit threshold value. The credit counter will saturate at this value once it has been decremented to this limit.

11.5.42 Credit Based Shaper Bottom Limit (Low) Register

Name: CBSBTLMTL Address: 0x0068

Bit	15	14	13	12	11	10	9	8				
	BOTLIMIT[15:8]											
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Reset	0	0	0	0	0	0	0	0				
Bit	7	6	5	4	3	2	1	0				
				BOTLIN	ИТ[7:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Reset	0	0	0	0	0	0	0	0				

Bits 15:0 – BOTLIMIT[15:0] Credit Bottom Limit (Low)
Lower 16 bits of the 20-bit credit bottom limit threshold value. The credit counter will saturate at this value once it has been decremented to this limit.

11.5.43 Credit Based Shaper Credit Counter (High) Register

Name: CBSCRCTRH Address: 0x0069

Bit	15	14	13	12	11	10	9	8
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
						CREDITC	TR[19:16]	
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0

Bits 3:0 – CREDITCTR[19:16] Credit Counter (High) Upper 4 bits of the 20-bit credit counter.

11.5.44 Credit Based Shaper Credit Counter (Low) Register

Name: CBSCRCTRL Address: 0x006A

Bit	15	14	13	12	11	10	9	8	
	CREDITCTR[15:8]								
Access	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
Bit	7	6	5	4 CREDITO	3 CTR[7:0]	2	1	0	
Bit Access	7 RO	6 RO	5 RO	4 CREDITO RO	3 CTR[7:0] RO	2 RO	1 RO	0 RO	

Bits 15:0 – CREDITCTR[15:0] Credit Counter (Low) Lower 16 bits of the 20-bit credit counter.

11.5.45 Credit Based Shaper Control Register

Name: **CBSCTRL** Address: 0x006B

Bit	15	14	13	12	11	10	9	8	
								ECCRDS[7]	
Access	RO	RO	RO	RO	RO	RO	R/W	R/W	
Reset	0	0	0	0	0	0	1	0	
Bit	7	6	5	4	3	2	1	0	
		ECCRDS[6:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	1	1	1	1	0	0	

Bits 8:1 – ECCRDS[7:0] Empty Cycle Credits
Sets the number of additional credits added on detection of an empty PLCA bus cycle.

Bit 0 - CBSEN Credit Based Shaper Enable

Value	Description
0	Hardware credit based traffic shaping is disabled
1	Hardware credit based traffic shaping is enabled

11.5.46 PLCA Skip Control Register

Name: PLCASKPCTL Address: 0x0070

Bit	15	14	13	12	11	10	9	8
Access	RO	RO						
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
							TOSKPEN	
Access	RO	RO	RO	RO	RO	RO	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 1 - TOSKPEN PLCA Transmit Opportunity Skip Enable

When enabled, the device will assert CRS for a number of its assigned PLCA transmit opportunities after transmitting a packet to delay the MAC from transmitting another packet. The number of transmit opportunities skipped before allowing the MAC to transmit is configured in the PLCA Cycle Skip register.

	re-re-r
Value	Description
0	Transmit opportunity skipping is disabled.
1	Transmit opportunity skipping is enabled.

11.5.47 PLCA Transmit Opportunity Skip Register

Name: PLCATOSKP Address: 0x0071

Bit	15	14	13	12	11	10	9	8
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				TOSKPN	IUM[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	Λ	Λ	Λ	Λ	0

Bits 7:0 - TOSKPNUM[7:0] Transmit Opportunity Skip Number

Configures the number of assigned transmit opportunities to skip after transmitting a packet.

11.5.48 Application Controlled Media Access Control Register

Name: ACMACTL Address: 0x0074

Bit	15	14	13	12	11	10	9	8
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
								ACMAEN
Access	RO	RO	RO	RO	RO	R/W	RC	R/W
Reset	0	0	0	0	0	0	0	0

Bit 0 - ACMAEN ACMA Enable

When enabled, the PHY will only allow the MAC to transmit a packet when the ACMA pin is asserted.

	indication and the contract of
Value	Description
0	ACMA operation is disabled.
1	ACMA operation is enabled.

11.5.49 Sleep Control 0 Register

Name: SLPCTL0 Address: 0x0080

Bit	15	14	13	12	11	10	9	8
	SLPEN	WKINEN	MDIWKEN	SLPINH	DLY[1:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	1
Bit	7	6	5	4	3	2	1	0
			SLPCA	L[3:0]				
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - SLPEN Sleep Enable

When set, the device stops driving the INH pin high, releasing it to high-impedance, and enters deep sleep mode. When released, if no other device is driving the INH electrical node, an external resistor will pull the node low disabling system switched power supplies.

		\circ			
Value	Description				
0	Normal operation				
1	Sleep				

Bit 14 - WKINEN WAKE_IN Wake-up Enable

When set, enables wake-up from sleep mode upon detection of a pulse on the WAKE IN pin.

Value	Description
0	Disable wake-up by input pulse on WAKE_IN
1	Enable wake-up by input pulse on WAKE_IN

Bit 13 - MDIWKEN MDI Wake-up Enable

When set, enables wake-up from sleep mode upon detection of activity at the MDI.

Value	Description
0	Disable wake-up from MDI activity detection
1	Enable wake-up from MDI activity detection

Bits 12:11 - SLPINHDLY[1:0] Sleep Inhibit Delay

This field configures the delay from when sleep is first commanded to when the power supply Inhibit (INH) pin becomes high-impedance and the sleep state is entered. This delay is used to allow all nodes on a mixing segment time to go quiet before powering down.

Value	Description
00	0 ms delay
01	50 ms delay
10	100 ms delay
11	200 ms delay

Bits 6:3 - SLPCAL[3:0] Sleep Calibration

Factory use only. Must always be written as 0000.

Value	Description
0000	Only valid value for write
Others	Invalid on write.
	Ignore on read.

11.5.50 Sleep Control 1 Register

Name: SLPCTL1 Address: 0x0081

Bit	15	14	13	12	11	10	9	8
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	WOPOL		WIPOL	WAKEIND	CLRWKI	MWKFWD	WKOFWDEN	MDIFWDEN
Access	R/W	R/W	R/W	RO	R/W	R/W SC	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 7 - WOPOL WAKE_OUT Polarity

This bit configures the polarity of the 90 µs output wake pulse generated on the WAKE_OUT pin. **Note:** Only wake from HIGH pulses on WAKE_OUT is supported.

Restriction: While this bit defaults to '0', it must always be written to '1' when writing to other bits in this register.

Value	Description
0	Reserved
1	Device will output an active HIGH pulse on the WAKE_OUT pin.

Bit 5 - WIPOL WAKE_IN Polarity

This bit configures the polarity of the pulse on the WAKE IN pin that will wake the device from sleep.

Value	Description
0	Device will wake from an active LOW pulse on WAKE_IN pin.
1	Device will wake from an active HIGH pulse on WAKE_IN pin.

Bit 4 - WAKEIND Wake Indication

This bit indicates a wake-up event when set.

Note: This bit is cleared by writing a '1' followed by a '0' to the Clear Wake Indication (CLRWKI) bit.

Value	Description
0	Wake-up from sleep has not occurred
1	Wake-up from sleep has occurred

Bit 3 - CLRWKI Clear Wake Indication

Writing a '1' to this bit will cause the Wake Indication (WAKEIND) status bit to be cleared.

Note: Once the device has been awaken, the station controller must write this bit to '1' then '0' to clear the wake activity status and re-enable the ability to be awaken again.

Value	Description
0	Normal operation
1	Clear wake activity detector

Bit 2 - MWKFWD Manual Wake Forward

When set, this bit will trigger a wake forwarding event. The device will generate a wake-up pulse on WAKE_OUT if forwarding of wake events to WAKE_OUT is enabled by WAKE_OUT Forward Enable (WKOFWDEN) bit. Wake activity signaling will be generated to the MDI if forwarding of wake events to MDI is enabled by MDI Wake Forward Enable (MDIFWDEN) bit.

Note: This bit is self-cleared by hardware once the wake output events have completed.

Value	Description
0	No wake out signaling (normal operation)
1	Generate wake out signaling to WAKE_OUT and/or MDI

Bit 1 - WKOFWDEN WAKE_OUT Forward Enable

Enable the generation of a WAKE_OUT pulse when a wake indication is detected by MDI activity or assertion of the WAKE_IN pin.

Value	Description
0	Disable generation of a pulse on WAKE_OUT on wake-up
1	Enable generation of a pulse on WAKE_OUT on wake-up

Bit 0 - MDIFWDEN MDI Forward Enable

This bit will enable the generation of activity signaling on the MDI when a wake indication is detected by the assertion of the WAKE_IN pin.

,	- 1
Value	Description
0	Disable generation MDI wake signaling upon wake-up from WAKE_IN
1	Enable generation MDI wake signaling upon wake-up from WAKE_IN

11.5.51 Collision Detector Control 0 Register

Name: CDCTL0 Address: 0x0087

Bit	15	14	13	12	11	10	9	8
	CDEN							
Access	R/W	R/W	R/W	R/W	RO	RO	RO	R/W
Reset	1	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	0	0	0	0	0	1	1

Bit 15 - CDEN Collision Detect Enable

When set, this bit enables the detection of collisions on the physical medium when transmitting.

Tip: No physical collisions will occur when all nodes in a mixing segment are properly configured for PLCA operation. As a result, for improved performance in high noise environments where false collisions may be detected leading to dropped packets, it is recommended that the user write this bit to a '0' to disable collision detection when PLCA is enabled. When collision detection is disabled, the PLCA reconciliation sublayer will still assert *logical collisions* to the MAC as part of normal operation.

When writing to this bit, use a read-modify-write operation to avoid accidental modifications to reserved fields.

Value	Description
0	Collision detection is disabled
1	Collision detection is enabled (default)

11.5.52 SQI Control Register

Name: SQICTL Address: 0x00A0

Bit	15	14	13	12	11	10	9	8
	SQIRST	SQIEN						
Access	R/W SC	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	1	0	1	0	0
Bit	7	6	5	4	3	2	1	0
Access	R/W	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0

Bit 15 - SQIRST SQI Reset

Setting this bit will reset the SQI block. This bit is self-clearing.

Value	Description	
0	Normal Operation	
1	SQI block is reset	

Bit 14 - SQIEN SQI Enable

This bit enables the SQI measurement process when set.

Value	Description
0	SQI is disabled
1	SQI is enabled

11.5.53 SQI Status 0 Register

Name: SQISTS0 Address: 0x00A1

Bit	15	14	13	12	11	10	9	8
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	SQIERR	SQIVLD		SQIVAL[2:0]			SQIERRC[2:0]	
Access	RO	RC	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0

Bit 7 - SQIERR SQIERR

This bit will be set when an error has occurred during the SQI statistic accumulation period.

Value	Description
0	No error detected during SQI measurement
1	Error has been detected during SQI measurement

Bit 6 - SQIVLD SQI Valid

This bit is set when the SQI measurement is valid and may be read from SQIVAL.

Value	Description
0	SQI estimation is not complete or valid
1	SQI estimation is complete and valid

Bits 5:3 - SQIVAL[2:0] SQI Value

This field contains the measured SQI Value.

Value	Description
000	SNR ≤ ~5 dB (Worst SQI)
	BER ≥ ~3.8E-02
001	~5 dB ≤ SNR ≤ ~10 dB
	~3.8E-02 ≥ BER ≥ ~7.8E-4
010	~10 dB ≤ SNR ≤ ~12 dB
	~7.8E-4 ≥ BER ≥ ~3.4E-5
011	~12 dB ≤ SNR ≤ ~14 dB
	~3.4E-5 ≥ BER ≥ ~2.7E-7
100	~14 dB ≤ SNR ≤ ~16 dB
	~2.7E-7 ≥ BER ≥ ~1.4E-10
101	~16 dB ≤ SNR ≤ ~17 dB
	~1.4E-10 ≥ BER ≥ ~7.2E-13
110	~17 dB ≤ SNR ≤ ~18 dB
	~7.2E-13 ≥ BER ≥ ~9.9E-16
111	SNR ≥ ~18 dB (Best SQI)
	BER ≤ ~9.9E-16

Bits 2:0 - SQIERRC[2:0] SQI Error Code

This field returns the SQI Error code when the SQIERR bit is set indicating an error condition occurred during the SQI statistic accumulation period.

Value	Description
000	No error / events

Value	Description
001	Low threshold > Maximum limitation
010	High threshold > Maximum limitation
011	Low threshold < Minimum limitation
100	High threshold < Minimum limitation
101	Low threshold > High threshold
Others	Undefined

11.5.54 SQI Configuration 0 Register

Name: SQICFG0 Address: 0x00AA

Bit	15	14	13	12	11	10	9	8
						TOIC	[7:4]	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
		TOID	[3:0]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	1	1	1	1

Bits 11:4 - TOID[7:0] Transmit Opportunity ID

This field configures the PLCA transmit opportunity ID for which to measure the SQI. This is used to measure the SQI for a specific node on a PLCA enabled segment. A value of 0xFF will result in the SQI being measured over packets received from all nodes.

11.5.55 Analog Control 5

Name: ANALOG5 Address: 0x00D5

Bit	15	14	13	12	11	10	9	8
				UV33F1	ΓM[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	1	0	1	0	0
Bit	7	6	5	4	3	2	1	0
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0

Bits 15:8 - UV33FTM[7:0] Voltage Ready Time

This field configures the 3.3V VDDA and VDDAU supply under-voltage filter in increments of 10 μ s. The voltage must fall below the under-voltage threshold for longer than the time configured in this field before the 3.3V under-voltage condition will be triggered.

Value	Description
00h	0 μs
01h	10 μs
02h	20 μs
14h	200 μs (default)
FFh	2.55 ms

11.5.56 OPEN Alliance Map ID and Version Register

Name: MIDVER Address: 0xCA00

Bit	15	14	13	12	11	10	9	8		
	IDM[7:0]									
Access	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	1	0	1	0		
Bit	7		-	4	2	2	1	0		
DIC	/	6	5	4	3	2	ı	U		
	/	6	5	VER	<u>3</u> [7:0]		I	0		
Access	RO	RO	RO	VER RO	7:0] RO	RO	RO	RO		

Bits 15:8 - IDM[7:0] Register Map ID

This field uniquely identifies the OPEN Alliance address space for register mapping.

Value	Description
0x0A	OPEN Alliance register map

Bits 7:0 - VER[7:0] Register Map Version

This field specifies the register map version. The version number is represented in binary-coded-decimal.

Tip: This device conforms to the OPEN Alliance register map version 1.1 although this field indicates conformity to version 1.0. The only difference between the two register map specifications is the default value of the Transmit Opportunity Timer (TOTMR) bit field. Version 1.0 of the register map specifies a default TOTMR value of 24 whereas this device implements a default TOTMR value of 32 conforming to Clause 30 of the IEEE 802.3 specification. This discontinuity was resolved with OPEN Alliance register map version 1.1.

Value	Description
0x10	OPEN Alliance register map version 1.0

11.5.57 PLCA Control 0 Register

Name: PLCA_CTRL0 Address: 0xCA01

Bit	15	14	13	12	11	10	9	8
	EN	RST						
Access	R/W	R/W SC	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0

Bit 15 - EN PLCA Enable

Setting this bit will enable Physical Layer Collision Avoidance. When this bit is clear, the PHY will operate in pure CSMA/CD mode.

Note: When PLCA is enabled on a properly configured mixing segment, no collisions should occur on the physical layer. It is therefore recommended to disable physical layer collision detection to achieve a higher level of noise tolerance.

Value	Description
0	The PLCA reconciliation sublayer is disabled and the PHY operates in normal CSMA/CD mode without the performance enhancements of PLCA.
1	The Physical Layer Collision Avoidance (PLCA) reconciliation sublayer functionality is enabled.

Bit 14 - RST PLCA Reset

Writing '1' to this bit will result in a reset of the PLCA reconciliation sublayer.

Note: This bit is self-clearing. When setting this bit, do not set other bits in this register.

Value	Description
0	Normal operation
1	PLCA reconciliation sublayer is reset

11.5.58 PLCA Control 1 Register

Name: PLCA_CTRL1 Address: 0xCA02

Bit	15	14	13	12	11	10	9	8			
	NCNT[7:0]										
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	1	0	0	0			
Bit	7	6	5	4	3	2	1	0			
	ID[7:0]										
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	1	1	1	1	1	1	1	1			

Bits 15:8 - NCNT[7:0] Node Count

This field configures the maximum number of nodes supported on the multidrop network. Proper operation requires that this field be set to at least the number of nodes that may exist on the network. The number of transmit opportunities in a given PLCA cycle.

Valid range: 0x01-0xFF

Note: This field must be configured correctly on the node with ID=0.

Bits 7:0 - ID[7:0] PLCA Local ID

This field configures the node's PLCA Local ID and the transmit opportunity within the PLCA cycle which it will transmit. A value of zero configures the node as the PLCA coordinator responsible for the periodic transmission of the PLCA BEACON and the number of transmit opportunities available per PLCA bus cycle. When set to 0xFF, the PLCA operation will be disabled and the node will revert to CSMA/CD.

Up to eight additional transmit opportunities may be configured in the PLCA Multiple ID 0-3 (MULTID0-MULTID3) registers.

Note: This parameter shall be configured unique across the multidrop network to ensure proper collision-free operation.

Value	Description
0	PLCA Coordinator node Local ID
1-0xFE	PLCA Follower node Local ID
0xFF	PLCA Disabled

Related Links

11.5.12. MULTID0

11.5.13. MULTID1

11.5.14. MULTID2

11.5.15. MULTID3

11.5.59 PLCA Status Register

Name: PLCA_STS Address: 0xCA03

Bit	15	14	13	12	11	10	9	8
	PST							
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0

Bit 15 - PST PLCA Status

This field indicates that the PLCA reconciliation sublayer is active and a BEACON is being regularly transmitted or received.

Value	Description
0	The PLCA reconciliation sublayer is not regularly receiving or transmitting the BEACON
1	The PLCA reconciliation sublayer is regularly receiving or transmitting the BEACON

11.5.60 PLCA Transmit Opportunity Timer Register

Name: PLCA_TOTMR

Address: 0xCA04

Bit	15	14	13	12	11	10	9	8		
Access	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
	TOTMR[7:0]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	1	0	0	0	0	0		

Bits 7:0 - TOTMR[7:0] PLCA Transmit Opportunity Timer

Configures the PLCA Transmit Opportunity time allowed for each node to begin transmitting and capture the carrier sense for all nodes on the network. The time is represented in increments of 100 ns (i.e., 1 BT). This field defaults to 32 bit times (3.2 µs) according to the IEEE 802.3cg specification (Clause 30), and the *OPEN Alliance 10BASE-T1S PLCA Management Registers* specification Version 1.2.

Important: This field must be configured identically across all nodes on the multidrop mixing segment.

Improper configuration of Transmit Opportunity timer may result in reduced network performance or collisions. Determination of the optimal Transmit Opportunity time requires knowledge of various delays of each of the vendor PHYs on the mixing segment and various physical layer propagation delay. It is recommended to leave this field at its default value unless a full evaluation of delays has been performed.

Note: Due to discrepancies in the default value for this register between Version 1.0 of the OPEN Alliance register map specification for this field an Clause 30 of the IEEE 802.3cg specification, it is recommended that this field always be configured to the desired value for all Microchip and non-Microchip devices on the network.

11.5.61 PLCA Burst Mode Register

Name: PLCA_BURST Address: 0xCA05

Bit	15	14	13	12	11	10	9	8			
	MAXBC[7:0]										
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
	BTMR[7:0]										
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	1	0	0	0	0	0	0	0			

Bits 15:8 - MAXBC[7:0] Maximum Burst Count

This field configures the maximum number of additional frames that the node may transmit in a single transmit opportunity. When set to 0, the PLCA burst mode is disabled and only one frame will be transmitted per transmit opportunity.

			,	
Value	Description			
0	Burst mode disab	led. Only on	e frame wil	be transmitted per Transmit Opportunity.
1-0×FF	Number of additi	onal frames	that may be	e transmitted in a burst.

Bits 7:0 - BTMR[7:0] Burst Timer

When burst mode is enabled, this field configures the amount of time allowed following the transmission of a frame which the node will continue to transmit and hold the multidrop network waiting for the MAC to transmit an additional frame. Should the timer expire before the MAC transmits an additional frame, or if the maximum number of frames allowed to be transmitted in a single burst has been exceeded, the node will stop transmitting and yield the network to the next transmit opportunity.

The time is represented in increments of 100 ns (i.e., 1 BT).

Note: The minimum value should be equal to the MAC inter-frame gap (IFG) plus margin for the latency between the MAC and PHY.

11.6 Miscellaneous Register Descriptions

The section describes the various miscellaneous registers. These registers are located within Memory Map Selector 10 (MMS 10).

RESERVED address space must not be written except when specifically directed to by Microchip. Failure to heed this warning may result in adverse operation and unexpected results.

Refer to the Register Bit Types section for details on register bit attribute notation.

Address	Name	Bit Pos.	7	6	5	4	3	2	1	0
0x00										
 0x80	Reserved									
		31:24	CTTH	R[1:0]						
0x81	QTXCFG	23:16			BUFSZ[2:0]		MACFCSDIS			
		15:8								
		7:0								
		31:24			DI 1507(2.01					
0x82	QRXCFG	23:16 15:8			BUFSZ[2:0]					
		7:0								
0x86		7.0								
	Reserved									
 0x88	Reserved									
		31:24								
0x89	CLKOCTL	23:16								
0x89	CLKOCIL	15:8								
		7:0				CLKOEN			CLKOS	EL[1:0]
		31:24								
0x8C	MISC	23:16								
OXOC	Wilde	15:8				UV18FEN		UV18F	TM[11:8]	
		7:0				UV18F	TM[7:0]			
0x90										
	Reserved									
0x93		31:24								
		23:16						MODE	L[15:12]	
0x94	DEVID	15:8				MODE	L[11:4]	WIODL	L[13.12]	
		7:0		MOD	EL[3:0]	WODE	L[11.4]	RE\/	[3:0]	
		31:24		IVIOD	LL[3.0]			IXE V	[5.0]	
		23:16					MBMPER	SPIPER	CSRBPER	SRAMPER
0x96	BUSPCS	15:8					William Eit	31 Z.X	COND. EN	3.5 2
		7:0				CSRBDPERG	SRAMDPERI	MBMDPERI	BMGRAPERI	PARGCEN
		31:24	KEY2	KEY1						
	CECODETCE!	23:16								
0x99	CFGPRTCTL	15:8								
		7:0								WREN
0x9D										
 0xFF	Reserved									
		31:24								
0x0100	ECCCTRL	23:16							DECDIS	ENCDIS
0,0100	LCCCTILL	15:8				SBERLI	MT[7:0]			
		7:0						ERONESHT	ERCLR	BERCNTEN
		31:24								
0x0101	ECCSTS	23:16	ERST:	5[1:0]				′N[5:0]		
		15:8					NT[7:0]			
		7:0				SBERC	NT[7:0]			

conti												
Address	Name	Bit Pos.	7	6	5	4	3	2	1	0		
		31:24					,	LTINJADR[12:8]				
		23:16				FLTINJA	DR[7:0]					
0x0102	ECCFLTCTRL	15:8		FLTINJONCE				IT2[5:0]				
		7:0	FLTINJAEQ	FLTINJEN				IT1[5:0]				
0x0106		7.0						[5,6]				
	Reserved											
0x01FF	Reserved											
0.0111		31:24										
		23:16										
0x0200	EC0CTRL	15:8			MAX	[O.C]				EDGE[1]		
		7:0	EDGE[0]		SRC[2:0]	.[3.0]	CLR		DA	EN		
		31:24	EDGE[0]		3KC[2.0]		CLK		DA	EIN		
0x0201	EC1CTRL	23:16			B # A N	(12.01				ED CEIA		
		15:8			MAX	[3:0]				EDGE[1]		
		7:0	EDGE[0]		SRC[2:0]		CLR		DA	EN		
		31:24										
0x0202	EC2CTRL	23:16										
		15:8			MAX	[3:0]				EDGE[1]		
		7:0	EDGE[0]		SRC[2:0]		CLR		DA	EN		
		31:24										
0x0203	EC3CTRL	23:16										
UXUZU3	ECSCIRL	15:8			MAX	[3:0]				EDGE[1]		
		7:0	EDGE[0]		SRC[2:0]		CLR		DA	EN		
		31:24			EC3OV	EC2OV	EC1OV	EC0OV				
		23:16										
0x0204	ECRDSTS	15:8		EC3CT[3:0] EC2CT[3:0]								
		7:0		EC1CT[3:0] EC0CT[3:0]								
		31:24		EC3TOT[7:0]								
		23:16										
0x0205	ECTOT	15:8		EC2TOT[7:0] EC1TOT[7:0]								
		7:0					DT[7:0]					
		31:24				2010	, , , , , , , , , , , , , , , , , , ,					
		23:16										
0x0206	ECCLKSH	15:8				CLKSE	[47:40]					
		7:0					[39:32]					
		31:24										
		23:16		CLKSEC[31:24] CLKSEC[23:16]								
0x0207	ECCLKSL	15:8										
							C[15:8]					
		7:0				CLKSE	C[7:0]	101201243				
		31:24				CI C CI C		NS[29:24]				
0x0208	ECCLKNS	23:16					NS[23:16]					
		15:8					NS[15:8]					
		7:0		CT4 03		CLOCK	_NS[7:0]	20.041				
		31:24	TSSE	C[1:0]				29:24]				
0x0209	ECRDTS0	23:16					[23:16]					
. =	3	15:8					[15:8]					
		7:0				TSNS	5[7:0]					
		31:24	TSSE	C[1:0]				29:24]				
0x020A	ECRDTS1	23:16					[23:16]					
2002UA	ECHDISI	15:8					[15:8]					
		7:0				TSNS	5[7:0]					
		31:24	TSSE	C[1:0]			TSNS[29:24]				
JV020D	ECDDTC3	23:16				TSNS[[23:16]					
0x020B	ECRDTS2	15:8					[15:8]					
		7:0					5[7:0]					
		31:24	TSSE	C[1:0]				29:24]				
		23:16				TSNSI	[23:16]	-				
0x020C	ECRDTS3	15:8					[15:8]					
		. 5.0				. 5. 45						

conti	nued			
Address	Name	Bit Pos.	7 6	5 4 3 2 1 0
		31:24	TSSEC[1:0]	TSNS[29:24]
0.0000	ECDDTC 4	23:16		TSNS[23:16]
0x020D	ECRDTS4	15:8		TSNS[15:8]
		7:0		TSNS[7:0]
		31:24	TSSEC[1:0]	TSNS[29:24]
		23:16		TSNS[23:16]
0x020E	ECRDTS5	15:8		TSNS[15:8]
		7:0		TSNS[7:0]
		31:24	TSSEC[1:0]	TSNS[29:24]
		23:16		TSNS[23:16]
0x020F	ECRDTS6	15:8		TSNS[15:8]
		7:0		TSNS[7:0]
		31:24	TSSEC[1:0]	TSNS[29:24]
		23:16		TSNS[23:16]
0x0210	ECRDTS7	15:8		TSNS[15:8]
		7:0		TSNS[7:0]
		31:24	TSSEC[1:0]	TSNS[29:24]
		23:16	.5525[1.0]	TSNS[23:16]
0x0211	ECRDTS8	15:8		TSNS[25:10]
		7:0		TSNS[7:0]
		31:24	TSSEC[1:0]	TSNS[29:24]
		23:16	13320[1.0]	TSNS[23:16]
0x0212	ECRDTS9	15:8		TSNS[25.10]
		7:0		TSNS[7:0]
		31:24	TSSEC[1:0]	TSNS[29:24]
		23:16	13310[1.0]	TSNS[23:16]
0x0213	ECRDTS10	15:8		TSNS[15:8]
		7:0		
		31:24	TCCFC[1,0]	TSNS[7:0]
		23:16	TSSEC[1:0]	TSNS[29:24]
0x0214	ECRDTS11	15:8		TSNS[23:16]
				TSNS[15:8]
		7:0	TCCEC[1.0]	TSNS[7:0]
		31:24 23:16	TSSEC[1:0]	TSNS[29:24]
0x0215	ECRDTS12	15:8		TSNS[23:16]
		7:0		TSNS[15:8]
			TCCFC[1,0]	TSNS[7:0]
		31:24	TSSEC[1:0]	TSNS[29:24]
0x0216	ECRDTS13	23:16 15:8		TSNS[23:16] TSNS[15:8]
		7:0		
			TCCFC[1,0]	TSNS[7:0]
		31:24 23:16	TSSEC[1:0]	TSNS[29:24]
0x0217	ECRDTS14	15:8		TSNS[23:16]
		7:0		TSNS[15:8] TSNS[7:0]
		31:24	TCCFC[1,0]	
			TSSEC[1:0]	TSNS[29:24]
0x0218	ECRDTS15	23:16		TSNS[23:16]
		15:8		TSNS[15:8]
0.0046		7:0		TSNS[7:0]
0x021C	Doggana			
	Reserved			
0x021E		24.24		CVC120.2.41
		31:24		CYC[29:24]
0x021F	PACYC	23:16		CYC[23:16]
		15:8		CYC[15:8]
		7:0	ACT	CYC[7:0]
		31:24	ACT SEC	DEC
0x0220	PACTRL	23:16		
-		15:8		DIF[9:8]
		7:0		DIF[7:0]

conti	inued											
Address	Name	Bit Pos.	7 6 5 4 3 2 1	0								
		31:24	STNS[30:0]									
	FOOTNI	23:16	STNS[30:0]									
0x0221	EG0STNS	15:8	STNS[30:0]									
		7:0	STNS[30:0]									
		31:24	STSEC[31:24]									
	FORTEFOL	23:16	STSEC[23:16]									
0x0222	EG0STSECL	15:8	STSEC[15:8]									
		7:0	STSEC[7:0]									
		31:24										
0x0223	FCOCTCFCII	23:16										
UXU223	EG0STSECH	15:8	STSEC[47:40]									
		7:0	STSEC[39:32]									
		31:24	PW[29:24]									
0,0224	EG0PW	23:16	PW[23:16]									
0x0224	EGUPVV	15:8	PW[15:8]									
		7:0	PW[7:0]									
		31:24	IT[29:24]									
0x0225	EG0IT	23:16	IT[23:16]									
UXU225	EGUII	15:8	IT[15:8]									
		7:0	IT[7:0]									
		31:24										
0x0226	EG0CTL	23:16										
UXU226	EGUCIL	15:8										
		7:0	ISREL REP AH STOP	START								
		31:24	STNS[30:0]									
0x0227	EG1STNS	23:16	STNS[30:0]									
0X0227	EGISTNS	15:8	STNS[30:0]									
		7:0	STNS[30:0]									
		31:24	STSEC[31:24]									
0x0228	EG1STSECL	23:16	STSEC[23:16]									
0x0226	LG1313LCL	15:8	STSEC[15:8]									
		7:0	STSEC[7:0]									
		31:24										
0x0229	EG1STSECH	23:16										
OXOZZJ	EGISISECII	15:8	STSEC[47:40]									
		7:0	STSEC[39:32]									
		31:24	PW[29:24]									
0x022A	EG1PW	23:16	PW[23:16]									
OXOZZA	201111	15:8	PW[15:8]									
		7:0	PW[7:0]									
		31:24	IT[29:24]									
0x022B	EG1IT	23:16	IT[23:16]									
*****		15:8	IT[15:8]									
		7:0	IT[7:0]									
		31:24										
0x022C	EG1CTL	23:16										
		15:8										
		7:0	ISREL REP AH STOP	START								
		31:24	STNS[30:0]									
0x022D	EG2STNS	23:16	STNS[30:0]									
		15:8	STNS[30:0]									
		7:0	STNS[30:0]									
		31:24	STSEC[31:24]									
0x022E	EG2STSECL	23:16	STSEC[23:16]									
		15:8	STSEC[15:8]									
		7:0	STSEC[7:0]									
		31:24										
0x022F	EG2STSECH	23:16	CTCCC IT 101									
		15:8	STSEC[47:40]									
		7:0	STSEC[39:32]									

conti	nued													
Address	Name	Bit Pos.	7	6	5	4	3	2	1	0				
		31:24					PW[2	29:24]	ı					
00220	FC2DW	23:16				PW[2	23:16]							
0x0230	EG2PW	15:8				PW[15:8]							
		7:0				PW	[7:0]							
		31:24					IT[2	9:24]						
0x0231	EG2IT	23:16					3:16]							
0.0251	EGZII	15:8		IT[15:8]										
		7:0				ITI	7:0]							
		31:24												
0x0232	EG2CTL	23:16												
		15:8				ICDE	252		CTO D	CT4 DT				
		7:0				ISREL	REP	AH	STOP	START				
		31:24				CTNC		[30:0]						
0x0233	EG3STNS	23:16					[30:0]							
		15:8 7:0					[30:0] [30:0]							
		31:24					[31:24]							
		23:16					[23:16]							
0x0234	EG3STSECL	15:8					[25.10] [[15:8]							
		7:0					C[7:0]							
		31:24				3.32	C[,,0]							
		23:16												
0x0235	EG3STSECH	15:8				STSEC	[47:40]							
		7:0					[39:32]							
		31:24					PW[2	29:24]						
00226	ECODIM	23:16				PW[2	23:16]							
0x0236	EG3PW	15:8	PW[15:8]											
		7:0	PW[7:0]											
		31:24	IT[29:24]											
0x0237	EG3IT	23:16					3:16]							
0.0237	20311	15:8					5:8]							
		7:0				IT[7:0]							
		31:24												
0x0238	EG3CTL	23:16												
		15:8				ICDEL	DED		CTOD	CTART				
		7:0 31:24				ISREL	REP	AH	STOP	START				
		23:16												
0x0239	PPSCTL	15:8												
		7:0				PPSPW[4:0]			PPSDIS	PPSEN				
		31:24	PADONE	PPSDONE		5, ,,[-,0]			. 1 3513	. I JEIN				
		23:16					EG3DONE	EG2DONE	EG1DONE	EG0DONE				
0x023A	SEVINTEN	15:8						7	, <u>-</u>					
		7:0	EC3DA	EC3OF	EC2DA	EC2OF	EC1DA	EC1OF	EC0DA	EC0OF				
		31:24	PADONE	PPSDONE										
0,40,220	CEVINTDIC	23:16					EG3DONE	EG2DONE	EG1DONE	EG0DONE				
0x023B	SEVINTDIS	15:8												
		7:0	EC3DA	EC3OF	EC2DA	EC2OF	EC1DA	EC1OF	EC0DA	EC0OF				
		31:24	PADONE	PPSDONE										
0x023C	SEVIM	23:16					EG3DONE	EG2DONE	EG1DONE	EG0DONE				
0,0230	SEVIIVI	15:8												
		7:0	EC3DA	EC3OF	EC2DA	EC2OF	EC1DA	EC1OF	EC0DA	EC0OF				
		31:24	PADONE	PPSDONE										
0x023D	SEVSTS	23:16					EG3DONE	EG2DONE	EG1DONE	EG0DONE				
		15:8	EC35 +	F6365	EC35 1	F6365	EC4 D :	FC4.05	ECOP 1	FC005				
		7:0	EC3DA	EC3OF	EC2DA	EC2OF	EC1DA	EC1OF	EC0DA	EC0OF				

Related Links

1.3. Register Bit Types

11.6.1 Queue Transmit Configuration

Name: QTXCFG Address: 0x0081

Important: When updating the fields of this register, the contents of reserved bits must not be changed. A read-modified-write process must be used when writing to this register.

Important: Fields in this register shall only be changed prior to setting the Configuration Synchronization (SYNC) bit in the OPEN Alliance Configuration 0 (OA_CONFIGO) register enabling Ethernet packet transfer. Once the SYNC bit has been set, fields in this register must not be changed without resetting the MAC-PHY.

Bit	31	30	29	28	27	26	25	24
	CTTH	R[1:0]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	1	0	1	1	0	0	0
Bit	23	22	21	20	19	18	17	16
			BUFSZ[2:0]		MACFCSDIS			
Access	R/W	R/W	R/W	R/W	R/W	RO	RO	RO
Reset	0	0	0	1	0	0	0	0
Bit	15	14	13	12	11	10	9	8
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0

Bits 31:30 - CTTHR[1:0] Cut-through threshold

This field configures the minimum number of buffers / blocks of Ethernet frame data to fill from the SPI host before the MAC may begin to transmit to the network in cut-through mode.

Value	Description
00	1 block
01	2 block (Default)
10	3 block
11	4 block

Bits 22:20 - BUFSZ[2:0] Buffer Size

Number of bytes allocated to each buffer in the transmit queue.

Important: The buffer size configured in this field must match the Block Payload Size (BPS) configured in the OPEN Alliance Configuration 0 (OA_CONFIG0) register.

Value	Description
000	32 Bytes
001	64 Bytes (default)
Others	Reserved

Bit 19 - MACFCSDIS MAC Frame Check Sequence Disable

By default, the device will accept transmit frames from the SPI host and the MAC will automatically pad the frames to the minimum 64 byte length with an appended calculated Frame Check Sequence (FCS). When set, this bit will disable the automatic padding and FCS insertion into transmitted frames, assuming that the SPI host has already performed padding and appending of the FCS. Additionally, when this bit is set, the MACPHY will validate the FCS of the frame received from the SPI host. If the FCS does not match, indicating a possible bit-error over the SPI link, the frame will not be transmitted to the network.

Value	Description
0	MAC will perform frame padding and insertion of the FCS
1	The MAC will not pad the frame or insert the FCS. The SPI host is responsible for padding the frame to the minimum size and appending the FCS.

11.6.2 Queue Receive Configuration

Name: QRXCFG Address: 0x0082

Important: When updating the fields of this register, the contents of reserved bits must not be changed. A read-modified-write process must be used when writing to this register.

Important: Fields in this register shall only be changed prior to setting the Configuration Synchronization (SYNC) bit in the OPEN Alliance Configuration 0 (OA_CONFIGO) register enabling Ethernet packet transfer. Once the SYNC bit has been set, fields in this register must not be changed without resetting the MAC-PHY.

Bit	31	30	29	28	27	26	25	24
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	1	1	0	0	0
Bit	23	22	21	20	19	18	17	16
			BUFSZ[2:0]					
Access	R/W	R/W	R/W	R/W	RO	RO	RO	RO
Reset	0	0	0	1	0	0	0	0
Bit	15	14	13	12	11	10	9	8
Access	RO	RO	RO	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	RO	RO
Reset	0	0	0	0	1	1	0	0

Bits 22:20 - BUFSZ[2:0] Buffer Size

Number of bytes allocated to each buffer in the receive queue.

Important: The buffer size configured in this field must match the Block Payload Size (BPS) configured in the OPEN Alliance Configuration 0 (OA_CONFIG0) register.

Value	Description
000	32 Bytes
001	64 Bytes (default)
Others	Reserved

11.6.3 Pad Control Register

Name: PADCTRL Address: x0088

31	30	29	28	27	26	25	24
PDRV3	[1:0]	PDRV	2[1:0]	PDRV	1[1:0]		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
1	1	1	1	1	1	0	0
23	22	21	20	19	18	17	16
REFCLKSEL						ACMAS	EL[1:0]
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
15	14	13	12	11	10	9	8
				BOSE	L[1:0]	A4SEL	_[1:0]
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	1	0	0
7	6	5	4	3	2	1	0
A3SEL	[1:0]	A2SE	L[1:0]	A1SEI	L[1:0]	A0SEL	_[1:0]
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
	R/W 1 23 REFCLKSEL R/W 0 15 R/W 0 7 A3SEL R/W	PDRV3[1:0] R/W R/W 1 1 23 22 REFCLKSEL R/W R/W 0 0 15 14 R/W R/W 0 0 7 6 A3SEL[1:0] R/W R/W	PDRV3[1:0] PDRV R/W R/W R/W 1 1 1 1 23 22 21 REFCLKSEL	PDRV3[1:0]	PDRV3[1:0] PDRV2[1:0] PDRV R/W R/W R/W R/W 1 1 1 1 23 22 21 20 19 REFCLKSEL R/W R/W R/W R/W R/W R/W 0 0 0 0 0 0 15 14 13 12 11 BOSE R/W R/W R/W R/W R/W R/W A/W A/W A/W A/SEL A/SEL A/W A/W A/W R/W A/SEL A/SEL A/SEL A/W R/W A/SW A/SW A/SW A/SW A/SW A/SW A/SW A/SW	PDRV3[1:0] PDRV2[1:0] PDRV1[1:0] R/W R/W R/W R/W R/W 1 1 1 1 1 1 23 22 21 20 19 18 REFCLKSEL R/W 0 0 0 0 0 0 0 0 0 0 0 0 0 1 <	PDRV3[1:0] PDRV2[1:0] PDRV1[1:0] R/W ACMAS ACMAS ACMAS R/W R/W

Bits 31:30 - PDRV3[1:0] Digital Output Pad Drive Strength

This field configures the output pad drive strength for pin group 3.

Value	Description
00	Low current drive
01	Medium-low current drive
10	Medium-high current drive
11	High current drive (default)

Bits 29:28 - PDRV2[1:0] Digital Output Pad Drive Strength

This field configures the output pad drive strength for pin group 2.

Value	Description
00	Low current drive
01	Medium-low current drive
10	Medium-high current drive
11	High current drive (default)

Bits 27:26 - PDRV1[1:0] Digital Output Pad Drive Strength

This field configures the output pad drive strength for pin group 1.

Value	Description
00	Low current drive
01	Medium-low current drive
10	Medium-high current drive
11	High current drive (default)

Bit 23 - REFCLKSEL Reference Clock Select

This bit selects the clock reference clock used for event capture, event generation and time stamping.

Value	Description
0	Reference clock is the internal 25 MHz clock derived from attached crystal.

1	Value	Description
ĺ	1	Reference clock is an external clock on pin DIOB0. The DIOB0 Select (B0SEL) bit field below must also be
		configured to 00b (external reference clock input).

Bits 17:16 - ACMASEL[1:0] ACMA Input Select

Selects the ACMA input pin.

Value	Description
00	ACMA disabled
01	ACMA enabled with the control signal provided by event generator 0 Note: If this value is selected, event generator 0 cannot be used as a DIO pin source.
10	ACMA enabled with the control signal on DIOA2
11	Reserved

Bits 11:10 - BOSEL[1:0] DIOBO Signal Select

This field configures the DIOB0 pin signal select.

Note: The DIOB0 pin is configured by default to be an output.

Value	Description
00	External 1588 reference clock (requires configuration in REFCLKSEL bit field above) (Input)
01	Clock output as configured in Clock Output Control Register, CLKOEN (Output)
	If this pin is not used, it may be connected to ground as long as the clock output is disabled in CLKOEN.
10	Reserved (Input)
11	Reserved (Input)

Bits 9:8 - A4SEL[1:0] DIOA4 Signal Select

This field configures the DIOA4 pin signal select

Value	Description
00	Reserved (Input)
01	1PPS (Output)
10	Event Generator 2 (Output) Note: No signal will be provided to DIOA4 if ACMASEL = 2.
11	Event Generator 3 (Output)

Bits 7:6 - A3SEL[1:0] DIOA3 Signal Select

This field configures the DIOA3 pin signal select

Value	Description
00	Event Capture (Input)
01	Event Generator 3 (Output)
10	Reserved (Output)
11	Reserved (Output)

Bits 5:4 - A2SEL[1:0] DIOA2 Signal Select

This field configures the DIOA2 pin signal select

Value	Description
00	ACMA and/or Event Capture (Input) ACMA is configured in the ACMASEL bits, above
01	Event Generator 2 (Output) Note: No signal will be provided to DIOA2 if ACMASEL = 2.
10	Reserved (Output)
11	Reserved (Input)

Bits 3:2 - A1SEL[1:0] DIO1 Signal Select

This field configures the DIO1 pin signal select

Value	Description
00	Event Capture (Input)
01	Event Generator 1 (Output)
10	Reserved (Output)

Value	Description
11	Reserved (Output)

Bits 1:0 - A0SEL[1:0] DIOA0 Signal Select This field configures the DIOA0 pin signal select

Value	Description
00	Event Capture (Input)
01	Event Generator 0 (Output)
10	Reserved (Output)
11	Reserved (Output)

11.6.4 Clock Output Control

Name: CLKOCTL Address: 0x0089

Bit	31	30	29	28	27	26	25	24
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				CLKOEN			CLKOS	EL[1:0]
Access	RO	RO	RO	R/W NASR	RO	RO	R/W NASR	R/W NASR
Reset	0	0	0	0	0	0	0	1

Bit 4 - CLKOEN Clock Output Enable

Setting this bit will enable the clock output to the CLKOUT pin.

Note: This bit is only reset by power-on. It is not affected by a soft reset or assertion of the RESET_N pin.

Value	Description
0	Clock output to CLKOUT is disabled
1	Clock output to CLKOUT is enabled

Bits 1:0 - CLKOSEL[1:0] Clock Output Select

This field selects the clock for output onto the CLKOUT pin when enabled.

Note: This bit is only reset by power-on. It is not affected by a soft reset or assertion of the RESET_N pin.

Value	Description
00	8.33 MHz
01	12.5 MHz
10	6.25 MHz
11	Reserved

11.6.5 Miscellaneous

Name: MISC Address: 0x008C

Bit	31	30	29	28	27	26	25	24
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	1	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				UV18FEN		UV18FT	M[11:8]	
Access	RO	RO	RO	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	1	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				UV18F	ΓM[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	1

Bit 12 – UV18FEN 1.8V Supply Under-Voltage Filter Enable

Setting this bit enables the 1.8V supply under-voltage detector filter.

Value	Description
0	1.8V supply under-voltage detector filter disabled
1	1.8V supply under-voltage detector filter enabled (default)

Bits 11:0 – UV18FTM[11:0] 1.8V supply Under-Voltage Filter Time

This field configures the 1.8V supply under-voltage filter in increments of 80 ns. The voltage must fall below the under-voltage threshold for longer than the time configured in this field before the under-voltage condition will be triggered.

Value	Description
0x000	0 ns
0x001	80 ns
0x010	1.28 µs
0x040	5.12 µs (default)
xFFF	327.8 ms

11.6.6 Device Identification

Name: DEVID Address: 0x0094

Bit	31	30	29	28	27	26	25	24
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
						MODEL	[15:12]	
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	1	0	0	0
Bit	15	14	13	12	11	10	9	8
				MODE	L[11:4]			
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	1	1	0	0	1	0	1
Bit	7	6	5	4	3	2	1	0
		MODE	L[3:0]			REV	[3:0]	
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	X	0	0	1	0

Bits 19:4 - MODEL[15:0] Model Number

Device's model / product identification number

	model / product activities and activities activities and activities and activities activities and activities activities and activities activities activities and activities activitie
Value	Description
8650h	LAN8650
8651h	LAN8651

Bits 3:0 - REV[3:0] Revision Number

Device's silicon revision identification number

Note: The default value of the this field varies dependent on the silicon revision number.

Value	Description
0001	Silicon Revision 1
0010	Silicon Revision 2

11.6.7 Bus Parity Control and Status

Name: BUSPCS Address: 0x96

Bit	31	30	29	28	27	26	25	24
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
					MBMPER	SPIPER	CSRBPER	SRAMPER
Access	RO	RO	RO	RO	RC	RC	RC	RC
Reset	0	0	0	1	0	0	0	0
Bit	15	14	13	12	11	10	9	8
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				CSRBDPERG	SRAMDPERI	MBMDPERI	BMGRAPERI	PARGCEN
Access	RO	RO	RO	R/W	R/W	R/W	R/W	R/W
Reset	0	0	1	0	0	0	0	0

Bit 19 - MBMPER MAC Buffer Manager Parity Error Status

This bit is set when the MAC buffer manager detects a bus parity error.

Value	Description
0	No bus parity error detected
1	Bus parity error has been detected by MAC buffer manager

Bit 18 - SPIPER SPI Parity Error Status

This bit is set when the SPI block detects a bus parity error.

Value	Description
0	No bus parity error detected
1	Bus parity error has been detected by SPI block

Bit 17 - CSRBPER Control/Status Register Bridge Parity Error Status

This bit is set when the bridge to the control/status registers detects a bus parity error. If the parity error occurs during a read operation, the bridge will return a data value of zero. Write operations to the control/status register bridge will be blocked on detection of a parity error.

Value	Description
0	No bus parity error detected
1	Bus parity error has been detected by the control/status register bridge

Bit 16 - SRAMPER SRAM Controller Parity Error Status

This bit is set when the SRAM controller detects a bus parity error. If the parity occurs on a read from the SRAM, the controller will return data of zero. Write operations to the SRAM will be blocked on detection of a parity error.

Value	Description
0	No bus parity error detected
1	Bus parity error has been detected by the SRAM controller

Bit 4 - CSRBDPERG Bridge Parity Error Injection

When this bit is set, the bridge to the control/status register bus will inject a bus data parity error on read.

Value	Description
0	Normal operation
1	Control/status register bridge will inject a data read parity error onto the bus

Bit 3 - SRAMDPERI SRAM Controller Parity Error Injection

When this bit is set, the SRAM controller will inject a bus data parity error on read.

	no bit is buy the bit in containing the inject of bus data partly cribines and
Value	Description
0	Normal operation
1	SRAM controller will inject a bus data read parity error onto the bus

Bit 2 - MBMDPERI Buffer Manager Data Parity Error Injection

When this bit is set, the MAC buffer manager will inject a bus data parity error on write.

Value	Description
0	Normal operation
1	MAC buffer manager will inject a data parity error on write bus accesses

Bit 1 - BMGRAPERI Buffer Manager Address Parity Error Injection

When this bit is set, the BMAC buffer manager will inject a bus address parity error on read and write.

Value	Description
0	Normal operation
1	MAC buffer manager will inject an address parity error on read/write bus accesses

Bit 0 - PARGCEN Parity Generation and Check Enable

When set, this bit will enable the parity generation and checking on the internal bus.

	•		0	U	
Value	Description				
0	Internal bus parity generat	on and	checking is disabled (defau	ılt)	
1	Internal bus parity generat	on and	checking is enabled		

11.6.8 Configuration Protection Control

Name: CFGPRTCTL Address: 0x0099

This register is used to control the protection of various configuration registers and fields from accidental writing. When the Write Enable (WREN) field is '0', then writes to sensitive configuration registers and fields will be blocked.

Bit	31	30	29	28	27	26	25	24
	KEY2	KEY1						
Access	RO	RO			RO	RO	RO	RO
Reset	0	0			0	0	0	0
Bit	23	22	21	20	19	18	17	16
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
								WREN
Access	RO	RO	RO	RO	RO	RO	RO	R/W
Reset	0	0	0	0	0	0	0	1

Bit 31 - KEY2 Key #2 Accepted

This bit is set when Key #2 (434F4E46h) has been successfully written to this register after Key #1. **Note:** This bit is cleared on write to any other bit field in this register.

Value	Description
0	Key #2 has not been successfully written after Key #1
1	Key #2 has been successfully written after Key #1

Bit 30 - KEY1 Key #1 Accepted

This bit is set when Key #1 (53464352h) has been successfully written to this register. **Note:** This bit is cleared on write of any other value is to this register, except Key #2.

Value	Description
0	Key #1 has not been successfully written
1	Key #1 has been successfully written

Bit 0 - WREN Configuration Write Enable

When this bit is clear, writes to protected register bit fields are disabled to protect against accidental configuration changes. Writable bit fields may be written when this bit is set.

Note: This bit may only be written once both Key #1 and Key #2 have been successfully written in the correct sequence and fields KEY1 and KEY2 are both set.

Value	Description
0	Writes to register bit fields disabled (Protected mode)
1	Writes to register bit fields enabled (Normal operation)

11.6.9 SRAM Error Correction Code Control

Name: ECCCTRL Address: 0x0100

Bit	31	30	29	28	27	26	25	24
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
							DECDIS	ENCDIS
Access	RO	RO	RO	RO	RO	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				SBERLI	ИТ[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	1
Bit	7	6	5	4	3	2	1	0
						ERONESHT	ERCLR	BERCNTEN
Access	RO	RO	RO	RO	RO	R/W	R/W1 SC	R/W
Reset	0	0	0	0	0	0	0	0

Bit 17 - DECDIS ECC Decoder Disable

When set, this bit will disable the ECC decoder.

Value	Description
0	ECC decoder enabled
1	ECC decoder disabled

Bit 16 - ENCDIS ECC Encoder Disable

When set, this bit will disable the ECC encoder.

	- 1
Value	Description
0	ECC encoder enabled
1	ECC encoder disabled

Bits 15:8 - SBERLMT[7:0] Single Bit Error Limit

This field configures the limit for detected single bit errors.

Bit 2 - ERONESHT Error One Shot

This bit configures how errors are captured. When set, only the first error status and syndrome will be captured. When cleared, the latest error status and syndrome will be captured.

Value	Description
0	Latest error/syndrome captured
1	First error/syndrome captured

Bit 1 - ERCLR Error Clear

Setting this bit will cause the ECC status register to clear.

Note: When set, the hardware will clear this bit automatically.

Value	Description
0	Normal operation
1	Clear ECC status register

Bit 0 - BERCNTEN Bit Error Count Enable

When set, this bit will enable the error counters (single-bit, double-bit, etc.). When clear, the counters are frozen, but not cleared.

Value	Description
0	Bit error counters are frozen
1	Bit error counters are enabled

11.6.10 SRAM Error Correction Code Status

Name: ECCSTS Address: 0x0101

Bit	31	30	29	28	27	26	25	24
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
	ERST	S[1:0]			ERRSY	N[5:0]		
Access	R/W	R/W	RC	RC	RC	RC	RC	RC
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				DBERC	NT[7:0]			
Access	RC	RC	RC	RC	RC	RC	RC	RC
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				SBERCI	NT[7:0]			
Access	RC	RC	RC	RC	RC	RC	RC	RC
Reset	0	0	0	0	0	0	0	0

Bits 23:22 - ERSTS[1:0] Error Status

Value	Description
00	No ECC error detected
01	Double bit error detected
10	Overall parity error detected (correctable)
11	Single bit error detected (correctable)

Bits 21:16 - ERRSYN[5:0] Error Syndrome

When a memory error is detected, this field contains the computed syndrome value. In the case of a single bit error, this syndrome will indicate which bit (0-38) contained the error (and was corrected).

Value	Description
x00	No single bit error detected
x01	SRAM bit 1, Parity bit 1 error
x02	SRAM bit 2, Parity bit 2 error
x03	SRAM bit 3, Data bit 0 error
x04	SRAM bit 4, Parity bit 3 error
x05	SRAM bit 5, Data bit 1 error
x06	SRAM bit 6, Data bit 2 error
x07	SRAM bit 7, Data bit 3 error
x08	SRAM bit 8, Parity bit 4 error
x09	SRAM bit 9, Data bit 4 error
x0A	SRAM bit 10, Data bit 5 error
x0B	SRAM bit 11, Data bit 6 error
x0C	SRAM bit 12, Data bit 7 error
x0D	SRAM bit 13, Data bit 8 error
x0E	SRAM bit 14, Data bit 9 error
x0F	SRAM bit 15, Data bit 10 error
x10	SRAM bit 16, Parity bit 5 error
x11	SRAM bit 17, Data bit 11 error

Value	Description
x12	SRAM bit 18, Data bit 12 error
	·
x13	SRAM bit 19, Data bit 13 error
x14	SRAM bit 20, Data bit 14 error
x15	SRAM bit 21, Data bit 15 error
x16	SRAM bit 22, Data bit 16 error
x17	SRAM bit 23, Data bit 17 error
x18	SRAM bit 24, Data bit 18 error
x19	SRAM bit 25, Data bit 19 error
x1A	SRAM bit 26, Data bit 20 error
x1B	SRAM bit 27, Data bit 21 error
x1C	SRAM bit 28, Data bit 22 error
x1D	SRAM bit 29, Data bit 23 error
x1E	SRAM bit 30, Data bit 24 error
x1F	SRAM bit 31, Data bit 25 error
x20	SRAM bit 32, Parity bit 6 error
x21	SRAM bit 33, Data bit 26 error
x22	SRAM bit 34, Data bit 27 error
x23	SRAM bit 35, Data bit 28 error
x24	SRAM bit 36, Data bit 29 error
x25	SRAM bit 37, Data bit 30 error
x26	SRAM bit 38, Data bit 31 error

Bits 15:8 - DBERCNT[7:0] Double Bit Error Count

This field counts the number of double bit errors detected. The count will not saturate at 0xFF and will roll over to 0x00.

Bits 7:0 - SBERCNT[7:0] Single Bit Error Count

This field counts the number of single bit errors detected. The count will not saturate at the value configured in the Single Bit Error Limit (SBERLMT) and instead roll over to 0x00.

11.6.11 SRAM Error Correction Code Fault Injection Control

Name: ECCFLTCTRL Address: 0x0102

Bit	31	30	29	28	27	26	25	24
					F	LTINJADR[12:8	3]	
Access	RO	RO	RO	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				FLTINJA	DR[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
		FLTINJONCE			FLTINJB	IT2[5:0]		
Access	RO	R/W SC	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	FLTINJAEQ	FLTINJEN			FLTINJB	IT1[5:0]		
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 28:16 - FLTINJADR[12:0] Fault Injection Address

only a READ from this address gets injected; Byte address, same as AHB. LSB 2 bits will be ignored.

Bit 14 - FLTINJONCE Fault Injection Once

When this bit is set, the fault will only be injected once upon next read of the SRAM, regardless of address.

Note: When set, this bit is self clearing upon injection of the fault.

Value	Description
0	Inject fault on every read of the Fault Injection Address
1	Only inject the fault on the next read of the Fault Injection Address

Bits 13:8 - FLTINJBIT2[5:0] Fault Injection Bit 2

This field configures which bit will be flipped on read of the SRAM. For single bit errors, configure this field to be the same as the Fault Injection Bit 1 (FLTINJBIT1) field. For double bit errors, configure this field to be different than the Fault Injection Bit 1 field.

Value	Description
x00	Inject fault into read of SRAM bit 0
x01	Inject fault into read of SRAM bit 1
x25	Inject fault into read of SRAM bit 37
x26	Inject fault into read of SRAM bit 38
x27	Reserved
x28	Reserved
x3F	Reserved

Bit 7 - FLTINJAEQ Fault Injection Address Equal

When set, the fault will only be injected when a SRAM read to the address specified by the Fault Injection Address field is performed.

Value	Description
0	
1	Inject fault when SRAM address equals the Fault Injection Address field

Bit 6 - FLTINJEN Fault Injection Enable

When this bit is set, bits will be flipped on the read of data from the SRAM address configured in the Fault Injection Address (FLTINJADR) field. The Fault Injection Address Equal (FLTINJAEQ) bit must also be set.

Value	Description
0	Fault injection is disabled
1	Fault injection is enabled

Bits 5:0 - FLTINJBIT1[5:0] Fault Injection Bit 1

This field configures which bit will be flipped on read of the SRAM. For single bit errors, configure this field to be the same as the Fault Injection Bit 2 (FLTINGBIT2) field. For double bit errors, configure this field to be different than the Fault Injection Bit 2 field.

	J
Value	Description
x00	Inject fault into read of SRAM bit 0
x01	Inject fault into read of SRAM bit 1
x25	Inject fault into read of SRAM bit 37
x26	Inject fault into read of SRAM bit 38
x27	Reserved
x28	Reserved
x3F	Reserved

11.6.12 Event Capture 0 Control Register

Name: ECOCTRL Address: 0x0200

Bit	31	30	29	28	27	26	25	24
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
			MAX	[3:0]				EDGE[1]
Access	R/W	R/W	R/W	R/W	R/W	RO	RO	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	EDGE[0]		SRC[2:0]		CLR		DA	EN
Access	R/W	R/W	R/W	R/W	W1S	R/W	RO	R/W
Reset	0	0	0	0	0	0	0	0

Bits 14:11 - MAX[3:0] Maximum number of captured timestamps

This is the maximum number of time stamps that can be captured by this event capture unit. When this unit is in use, this value must be greater than 0. Once this number is reached, timestamps must be read before any new timestamps will be captured; should another capture be triggered before a timestamp is read, an overflow condition will occur and the newest value will be lost.

This value shall not be changed if any of the timestamp units are enabled. Data corruption can occur.

The sum of all MAX values in all Timestamp control registers must not exceed 16.

Value	Description
0	Only valid when this event capture unit is disabled.
1-F	Maximum number of time stamps allocated to this event capture unit.

Bits 8:7 - EDGE[1:0] Capture Edge Selection

<u>^</u>WARNING

This value can only be changed when disabled.

Value	Description
00	Capture on rising edge
01	Capture on falling edge
10	Capture on both edges
11	Reserved

Bits 6:4 - SRC[2:0] Capture Signal Source

MARNING

This value can only be changed when disabled.

Value	Description
000	Receive pattern match from PHY
001	Transmit pattern match from PHY
010	DIOA0 input
011	DIOA1 input
100	DIOA2 input
101	DIOA3 input
110-111	Reserved

Bit 3 - CLR Clear event capture unit

Writing a 1 to this bit will reset this event capture status and stored timestamps. Control settings will not change.

Value	Description
0	No effect
1	Reset this event capture unit.

Bit 1 - DA Data Available

Value	Description
0	This capture unit has no timestamps available to be read.
1	This capture unit has timestamps available to be read.

Bit 0 - EN Event Capture Unit Enable

Value	Description			
0	This event capture unit is disabled.			
1	This event capture unit is enabled.			

11.6.13 Event Capture 1 Control Register

Name: EC1CTRL Address: 0x0201

Bit	31	30	29	28	27	26	25	24
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
			MAX	[3:0]				EDGE[1]
Access	R/W	R/W	R/W	R/W	R/W	RO	RO	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	EDGE[0]		SRC[2:0]		CLR		DA	EN
Access	R/W	R/W	R/W	R/W	W1S	R/W	RO	R/W
Reset	0	0	0	0	0	0	0	0

Bits 14:11 - MAX[3:0] Maximum number of captured timestamps

This is the maximum number of time stamps that can be captured by this event capture unit. When this unit is in use, this value must be greater than 0. Once this number is reached, timestamps must be read before any new timestamps will be captured; should another capture be triggered before a timestamp is read, an overflow condition will occur and the newest value will be lost.

This value shall not be changed if any of the timestamp units are enabled. Data corruption can occur.

The sum of all MAX values in all Timestamp control registers must not exceed 16.

Value	Description
0	Only valid when this event capture unit is disabled.
1-F	Maximum number of time stamps allocated to this event capture unit.

Bits 8:7 - EDGE[1:0] Capture Edge Selection

<u>↑</u>WARNING

This value can only be changed when disabled.

Value	Description
00	Capture on rising edge
01	Capture on falling edge
10	Capture on both edges
11	Reserved

Bits 6:4 - SRC[2:0] Capture Signal Source

MARNING

This value can only be changed when disabled.

Value	Description
000	Receive pattern match from PHY
001	Transmit pattern match from PHY
010	DIOA0 input
011	DIOA1 input
100	DIOA2 input
101	DIOA3 input
110-111	Reserved

Bit 3 - CLR Clear event capture unit

Writing a 1 to this bit will reset this event capture status and stored timestamps. Control settings will not change.

Value	Description
0	No effect
1	Reset this event capture unit.

Bit 1 - DA Data Available

Value	Description
0	This capture unit has no timestamps available to be read.
1	This capture unit has timestamps available to be read.

Bit 0 - EN Event Capture Unit Enable

Value	Description				
0	This event capture unit is disabled.				
1	This event capture unit is enabled.				

11.6.14 Event Capture 2 Control Register

Name: EC2CTRL Address: 0x0202

Bit	31	30	29	28	27	26	25	24
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
			MAX	[3:0]				EDGE[1]
Access	R/W	R/W	R/W	R/W	R/W	RO	RO	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	EDGE[0]		SRC[2:0]		CLR		DA	EN
Access	R/W	R/W	R/W	R/W	W1S	R/W	RO	R/W
Reset	0	0	0	0	0	0	0	0

Bits 14:11 - MAX[3:0] Maximum number of captured timestamps

This is the maximum number of time stamps that can be captured by this event capture unit. When this unit is in use, this value must be greater than 0. Once this number is reached, timestamps must be read before any new timestamps will be captured; should another capture be triggered before a timestamp is read, an overflow condition will occur and the newest value will be lost.

This value shall not be changed if any of the timestamp units are enabled. Data corruption can occur.

The sum of all MAX values in all Timestamp control registers must not exceed 16.

Value	Description
0	Only valid when this event capture unit is disabled.
1-F	Maximum number of time stamps allocated to this event capture unit.

Bits 8:7 - EDGE[1:0] Capture Edge Selection

<u></u>MARNING

This value can only be changed when disabled.

Value	Description
00	Capture on rising edge
01	Capture on falling edge
10	Capture on both edges
11	Reserved

Bits 6:4 - SRC[2:0] Capture Signal Source

<u>^</u>WARNING

This value can only be changed when disabled.

Value	Description
000	Receive pattern match from PHY
001	Transmit pattern match from PHY
010	DIOA0 input
011	DIOA1 input
100	DIOA2 input
101	DIOA3 input
110-111	Reserved

Bit 3 - CLR Clear capture unit

Writing a 1 to this bit will reset this event capture status and stored timestamps. Control settings will not change.

Value	Description
0	No effect
1	Reset this event capture unit.

Bit 1 - DA Data Available

Value	Description
0	This capture unit has no timestamps available to be read.
1	This capture unit has timestamps available to be read.

Bit 0 - EN Event Capture Unit Enable

Value	Description				
0	This event capture unit is disabled.				
1	This event capture unit is enabled.				

11.6.15 Event Capture 3 Control Register

Name: EC3CTRL Address: 0x0203

Bit	31	30	29	28	27	26	25	24
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
			MAX	[3:0]				EDGE[1]
Access	R/W	R/W	R/W	R/W	R/W	RO	RO	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	EDGE[0]		SRC[2:0]		CLR		DA	EN
Access	R/W	R/W	R/W	R/W	W1S	R/W	RO	R/W
Reset	0	0	0	0	0	0	0	0

Bits 14:11 - MAX[3:0] Maximum number of captured timestamps

This is the maximum number of time stamps that can be captured by this event capture unit. When this unit is in use, this value must be greater than 0. Once this number is reached, timestamps must be read before any new timestamps will be captured; should another capture be triggered before a timestamp is read, an overflow condition will occur and the newest value will be lost.

This value shall not be changed if any of the timestamp units are enabled. Data corruption can occur.

The sum of all MAX values in all Timestamp control registers must not exceed 16.

Value	Description
0	Only valid when this event capture unit is disabled.
1-F	Maximum number of time stamps allocated to this event capture unit.

Bits 8:7 - EDGE[1:0] Capture Edge Selection

<u>↑</u>WARNING

This value can only be changed when disabled.

Value	Description
00	Capture on rising edge
01	Capture on falling edge
10	Capture on both edges
11	Reserved

Bits 6:4 - SRC[2:0] Capture Signal Source

MARNING

This value can only be changed when disabled.

Value	Description
000	Receive pattern match from PHY
001	Transmit pattern match from PHY
010	DIOA0 input
011	DIOA1 input
100	DIOA2 input
101	DIOA3 input
110-111	Reserved

Bit 3 - CLR Clear event capture unit

Writing a 1 to this bit will reset this event capture status and stored timestamps. Control settings will not change.

Value	Description
0	No effect
1	Reset this event capture unit.

Bit 1 - DA Data Available

Value	Description
0	This capture unit has no timestamps available to be read.
1	This capture unit has timestamps available to be read.

Bit 0 - EN Event Capture Unit Enable

Value	Description
0	This event capture unit is disabled.
1	This event capture unit is enabled.

11.6.16 Event Capture Read Status Register

Name: ECRDSTS Address: 0x0204

Contains the status of all of the event capture data registers since the last time this register was read. Any time that this register is read, the current state, including wall clock time, is saved and can be read from the following event capture registers.

Important: Since the event time stamps only have 2 bits representing seconds, this register must be read while the oldest time stamp can still be calculated from the captured wall clock.

Bit	31	30	29	28	27	26	25	24
			EC3OV	EC2OV	EC1OV	EC0OV		
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
		EC3CT[3:0]				EC2CT[3:0]		
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
		EC1CT[3:0]			EC0CT[3:0]			
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0

Bit 29 - EC3OV Event capture unit 3 overflow

Value	Description
0	Event capture unit 3 has not overflowed.
1	Event capture unit 3 has overflowed and missed capturing at least one timestamp.

Bit 28 - EC2OV Event capture unit 2 overflow

Value	Description
0	Event capture unit 2 has not overflowed.
1	Event capture unit 2 has overflowed and missed capturing at least one timestamp.

Bit 27 - EC1OV Event capture unit 1 overflow

Value	Description
0	Event capture unit 1 has not overflowed.
1	Event capture unit 1 has overflowed and missed capturing at least one timestamp.

Bit 26 - ECOOV Event capture unit 0 overflow

Value	Description
0	Event capture unit 0 has not overflowed.
1	Event capture unit 0 has overflowed and missed capturing at least one timestamp.

Bits 15:12 - EC3CT[3:0] Event capture unit 3 timestamp count

Value	Description
0 - F	Number of valid time stamps currently available for reading from event capture unit 3

Bits 11:8 - EC2CT[3:0] Event capture unit 2 timestamp count

Value	Description
0 - F	Number of valid time stamps currently available for reading from event capture unit 2

Bits 7:4 - EC1CT[3:0] Event capture unit 1 timestamp count

Value	Description
0 - F	Number of valid time stamps currently available for reading from event capture unit 1

Bits 3:0 - ECOCT[3:0] Event capture unit 0 timestamp count

Value	Description
0 - F	Number of valid time stamps currently available for reading from event capture unit 0

11.6.17 Event Capture Total Counts Register

Name: ECTOT Address: 0x0205

This register contains the total number of timestamps captured by each of the event capture units. The counts are reloaded every time ECRDSTS is read. The counts will roll over to 0 after 255. A count is cleared only when the timestamper is disabled or cleared.

Bit	31	30	29	28	27	26	25	24		
	EC3TOT[7:0]									
Access	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0		
Bit	23	22	21	20	19	18	17	16		
				EC2TC	T[7:0]					
Access	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0		
Bit _	15	14	13	12	11	10	9	8		
				EC1TC	T[7:0]					
Access	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				EC0TC	T[7:0]					
Access	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0		

Bits 31:24 - EC3TOT[7:0] Event Capture 3 Total

[bitFieldDescription]

Value	Description
0-FF	Total number of timestamps capured by event capture unit 3

Bits 23:16 - EC2TOT[7:0] Event Capture 2 Total

	ortification companies a rotal
Value	Description
0-FF	Total number of timestamps capured by event capture unit 2

Bits 15:8 - EC1TOT[7:0] Event Capture 1 Total

_		
Valu	ıe	Description
0-F	F	Total number of timestamps capured by event capture unit 1

Bits 7:0 - ECOTOT[7:0] Event Capture 0 Total

	_	- ·
Value		Description
0-FF		Total number of timestamps capured by event capture unit 0

11.6.18 Event Capture Clock Seconds High Register

Name: ECCLKSH Address: 0x0206

Bit	31	30	29	28	27	26	25	24
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				CLKSEC	[47:40]			
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				CLKSEC	[39:32]			
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - CLKSEC[47:32] Clock time in seconds

This field contains the upper 16 bits of the seconds portion of the clock time which was stored when the Event Capture Read Status Register (ECRDSTS) register was last read. These bits do not appear in the 64 bit format used in the SPI timestamp protocol. See 64-Bit Timestamp Format for more information.

11.6.19 Event Capture Clock Seconds Low Register

Name: ECCLKSL Address: 0x0207

Bit	31	30	29	28	27	26	25	24		
	CLKSEC[31:24]									
Access	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0		
Bit	23	22	21	20	19	18	17	16		
				CLKSEC	[23:16]					
Access	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0		
Bit _	15	14	13	12	11	10	9	8		
				CLKSE	C[15:8]					
Access	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				CLKSE	C[7:0]					
Access	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0		

Bits 31:0 - CLKSEC[31:0] Clock time in seconds

This field contains the lower 32 bits of the seconds portion of the clock time which was stored when the Event Capture Read Status Register (ECRDSTS) register was last read. See 64-Bit Timestamp Format for more information

11.6.20 Event Capture Clock Nanoseconds Register

Name: ECCLKNS Address: 0x0208

Bit	31	30	29	28	27	26	25	24	
			CLOCK_NS[29:24]						
Access	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	
Bit	23	22	21	20	19	18	17	16	
				CLOCK_N	IS[23:16]				
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	
Bit	15	14	13	12	11	10	9	8	
				CLOCK_I	NS[15:8]				
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
				CLOCK_	NS[7:0]				
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

Bits 29:0 - CLOCK_NS[29:0] Clock time in nanoseconds

This field contains the nanoseconds portion of the clock time which was stored when the Event Capture Read Status Register (ECRDSTS) register was last read.

11.6.21 Event Capture Read Timestamp Register n

Name: ECRDTSn

Address: 0x0209,0x20A,0x20B,0x20C,0x20D, 0x20E, 0x20F, 0x210, 0x211, 0x212,0x213, 0x214,

0x215,0x216,0x217,0x218

These registers are read to obtain the timestamps stored by the event capture units when the ECRDSTS register was last read. These values must be combined with the ECCLK registers to obtain the clock time of the timestamp. See the Event Capture section for a description of register allocation among the event capture units.

Note: When the register does not contain a valid timestamp it will read back as 0xFFFF_FFFF.

Bit	31	30	29	28	27	26	25	24	
	TSS	EC[1:0]		TSNS[29:24]					
Access	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	
Bit	23	22	21	20	19	18	17	16	
				TSNS[23:16]				
Access	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	
Bit	15	14	13	12	11	10	9	8	
				TSNS	[15:8]				
Access	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
				TSNS	5[7:0]				
Access	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	

Bits 31:30 - TSSEC[1:0] Timestamp Seconds

This 2-bit field contains the seconds portion of the saved timestamp.

Bits 29:0 - TSNS[29:0] Timestamp Nanoseconds

This bitfield contains the nanosecond portion of the saved timestamp.

11.6.22 Phase Adjuster Cycles Register

Name: PACYC Address: 0x021F

Bit	31	30	29	28	27	26	25	24	
				CYC[29:24]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	
Bit	23	22	21	20	19	18	17	16	
				CYC[2	23:16]				
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	
Bit	15	14	13	12	11	10	9	8	
				CYC[15:8]				
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
				CYC	[7:0]				
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

Bits 29:0 - CYC[29:0]

-	
Value	Description
0 -	Number of clock cycles between phase adjustments.
0x3FFF_FF	
FF	

11.6.23 Phase Adjuster Control Register

Name: PACTRL Address: 0x0220

⚠ DANGER

No bit in this register shall be modified while the phase adjust is active.

Bit	31	30	29	28	27	26	25	24
	ACT	SEC	DEC					
Access	W1S	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
							DIF	[9:8]
Access							R/W	R/W
Reset							0	0
Bit	7	6	5	4	3	2	1	0
				DIF[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 31 - ACT Phase adjust active

Writing a 1 to this bit will start the phase adjust. Once started, this bit will read back as 1 until the phase adjustment is complete. At completion, hardware will reset this bit to 0.

Bit 30 - SEC Units are seconds

Value	Description
0	Increment or decrement the nanosecond portion of the wall clock
1	Increment the second portion of the wall clock.

Bit 29 - DEC Decrement

Value	Description
0	Increment the wall clock nanosecond or second field.
1	Decrement the wall clock nanosecond field. This value is not valid if the SEC field is 1.

Bits 9:0 - DIF[9:0] Time difference

Value	Description
0 - 3FF	The total number of reference clock cycles during which the wall clock is incremented or decremented.

11.6.24 Event 0 Start Time Nanoseconds Register

Name: EGOSTNS Address: 0x0221

Bit	31	30	29	28	27	26	25	24		
				STNS[30:0]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	23	22	21	20	19	18	17	16		
				STNS	[30:0]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	15	14	13	12	11	10	9	8		
				STNS	[30:0]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				STNS	[30:0]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 29:0 - STNS[30:0] Pulse Start Time in Nanoseconds

This field contains the nanosecond portion of the start time.

11.6.25 Event 0 Start Time Seconds Low Register

Name: EG0STSECL Address: 0x0222

Bit	31	30	29	28	27	26	25	24
				STSEC	[31:24]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				STSEC	[23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				STSEC	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				STSE	C[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 31:0 - STSEC[31:0] Start Time in Seconds

This field contains the lower 32 bits of the seconds portion of the pulse start time.

11.6.26 Event 0 Start Time Seconds High Register

Name: EG0STSECH Address: 0x0223

Bit	31	30	29	28	27	26	25	24
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				STSEC	[47:40]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				STSEC	[39:32]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - STSEC[47:32] Start Time in Seconds

This field contains upper 16 bits of the seconds portion of the pulse start time.

Note: These bits are not included in the 64 bit timestamp format used in the SPI timestamp protocol.

11.6.27 Event 0 Pulse Width Register

Name: EG0PW Address: 0x0224

Bit	31	30	29	28	27	26	25	24		
				PW[29:24]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	23	22	21	20	19	18	17	16		
				PW[2	3:16]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	15	14	13	12	11	10	9	8		
				PW[15:8]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				PW[7:0]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 29:0 - PW[29:0] Pulse Width in Nanoseconds

This field contains duration (in nanoseconds) that the pulse is asserted. If this value is 0, the output is toggled at the start time and remains constant for the idle time.

11.6.28 Event 0 Idle Time Register

Name: EG0IT Address: 0x0225

Bit	31	30	29	28	27	26	25	24
					IT[29	9:24]		
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				IT[23	3:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				IT[1	5:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				IT[7	7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 29:0 - IT[29:0] Idle Time in Nanoseconds

This field contains the time that the pulse is deasserted. If the pulse is configured as repeating, the signal will be reasserted at the completion of this time. A reasserting pulse with pulse width of 0 will toggle again at the end of the idle time. The event is always marked as done at the end of the last idle time.

11.6.29 Event Generator 0 Control Register

Name: EG0CTL Address: 0x0226

Bit	31	30	29	28	27	26	25	24
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				ISREL	REP	AH	STOP	START
Access	RO	RO	R/W	R/W	R/W	R/W	W1S	W1S
Reset	0	0	0	0	0	0	0	0

Bit 4 - ISREL Event Uses Relative Timing

Value	Description
0	Event start time is an absolute time.
1	Event start time is relative to the wall clock time when the START bit is written.

Bit 3 - REP Event Repeats Periodically

Value	Description
0	Event occurs once.
1	Event repeats periodically. The period equals pulse width plus idle time.

Bit 2 - AH Event Output is Active High

Note: This bit has no effect if pulse width = 0 (toggle mode).

Value	Description
0	Event is active low - signal will be driven low at event start for the duration of the pulse width, then will transition to and remain low for the idle time.
1	Event is active high - signal will be driven high at event start for the duration of the pulse width, then will transition to and remain low for the idle time.

Bit 1 - STOP Stop Event

Note: Only events with REPEAT=1 need to be stopped.

Value	Description
0	No effect
1	Stop repeating pulses at the end of the next idle time. The output will remain at the idle value and event done status bit will be set.

Bit 0 - START Start Event

Value	Description
0	No effect
1	Start the event configured in this register.

11.6.30 Event 1 Start Time Nanoseconds Register

Name: EG1STNS Address: 0x0227

Bit	31	30	29	28	27	26	25	24			
				STNS[30:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
Bit	23	22	21	20	19	18	17	16			
				STNS	[30:0]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
Bit	15	14	13	12	11	10	9	8			
				STNS	[30:0]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
				STNS	[30:0]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			

Bits 29:0 - STNS[30:0] Pulse Start Time in Nanoseconds

This field contains the nanosecond portion of the start time.

11.6.31 Event 1 Start Time Seconds Low Register

Name: EG1STSECL Address: 0x0228

Bit	31	30	29	28	27	26	25	24				
	STSEC[31:24]											
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Reset	0	0	0	0	0	0	0	0				
Bit _	23	22	21	20	19	18	17	16				
				STSEC	[23:16]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Reset	0	0	0	0	0	0	0	0				
Bit _	15	14	13	12	11	10	9	8				
				STSEC	[15:8]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Reset	0	0	0	0	0	0	0	0				
Bit	7	6	5	4	3	2	1	0				
	STSEC[7:0]											
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Reset	0	0	0	0	0	0	0	0				

Bits 31:0 - STSEC[31:0] Start Time in Seconds

This field contains the lower 32 bits of the seconds portion of the pulse start time.

11.6.32 Event 1 Start Time Seconds High Register

Name: EG1STSECH Address: 0x0229

Bit	31	30	29	28	27	26	25	24	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	
Bit	23	22	21	20	19	18	17	16	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	
Bit	15	14	13	12	11	10	9	8	
				STSEC	[47:40]				
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
	STSEC[39:32]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

Bits 15:0 - STSEC[47:32] Start Time in Seconds

This field contains upper 16 bits of the seconds portion of the pulse start time.

Note: These bits are not included in the 64 bit timestamp format used in the SPI timestamp protocol.

11.6.33 Event 1 Pulse Width Register

Name: EG1PW Address: 0x022A

Bit	31	30	29	28	27	26	25	24		
			PW[29:24]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	23	22	21	20	19	18	17	16		
				PW[2	3:16]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	15	14	13	12	11	10	9	8		
				PW[15:8]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
	PW[7:0]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 29:0 - PW[29:0] Pulse Width in Nanoseconds

This field contains duration (in nanoseconds) that the pulse is asserted. If this value is 0, the output is toggled at the start time and remains constant for the idle time.

11.6.34 Event 1 Idle Time Register

Name: EG1IT Address: 0x022B

Bit	31	30	29	28	27	26	25	24			
				IT[29:24]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
Bit	23	22	21	20	19	18	17	16			
				IT[23	3:16]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
Bit	15	14	13	12	11	10	9	8			
				IT[1	5:8]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
				IT[7	7:0]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			

Bits 29:0 - IT[29:0] Idle Time in Nanoseconds

This field contains the time that the pulse is deasserted. If the pulse is configured as repeating, the signal will be reasserted at the completion of this time. A reasserting pulse with pulse width of 0 will toggle again at the end of the idle time. The event is always marked as done at the end of the last idle time.

11.6.35 Event Generator 1 Control Register

Name: EG1CTL Address: 0x022C

Bit	31	30	29	28	27	26	25	24
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				ISREL	REP	AH	STOP	START
Access	RO	RO	R/W	R/W	R/W	R/W	W1S	W1S
Reset	0	0	0	0	0	0	0	0

Bit 4 - ISREL Event Uses Relative Timing

Value	Description
0	Event start time is an absolute time.
1	Event start time is relative to the wall clock time when the START bit is written.

Bit 3 - REP Event Repeats Periodically

Value	Description
0	Event occurs once.
1	Event repeats periodically. The period equals pulse width plus idle time.

Bit 2 - AH Event Output is Active High

Note: This bit has no effect if pulse width = 0 (toggle mode).

Value	Description
0	Event is active low - signal will be driven low at event start for the duration of the pulse width, then will transition to and remain low for the idle time.
1	Event is active high - signal will be driven high at event start for the duration of the pulse width, then will transition to and remain low for the idle time.

Bit 1 - STOP Stop Event

Note: Only events with REPEAT=1 need to be stopped.

Value	Description
0	No effect
1	Stop repeating pulses at the end of the next idle time. The output will remain at the idle value and event done status bit will be set.

Bit 0 - START Start Event

Value	Description
0	No effect
1	Start the event configured in this register.

11.6.36 Event 2 Start Time Nanoseconds Register

Name: EG2STNS Address: 0x022D

Bit	31	30	29	28	27	26	25	24			
				STNS[30:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
Bit	23	22	21	20	19	18	17	16			
				STNS	[30:0]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
Bit	15	14	13	12	11	10	9	8			
				STNS	[30:0]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
				STNS	[30:0]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			

Bits 29:0 – STNS[30:0] Pulse Start Time in Nanoseconds

This field contains the nanosecond portion of the start time.

11.6.37 Event 2 Start Time Seconds Low Register

Name: EG2STSECL Address: 0x022E

Bit	31	30	29	28	27	26	25	24		
	STSEC[31:24]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	23	22	21	20	19	18	17	16		
		,		STSEC	[23:16]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	15	14	13	12	11	10	9	8		
				STSEC	[15:8]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				STSE	C[7:0]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 31:0 - STSEC[31:0] Start Time in Seconds

This field contains the lower 32 bits of the seconds portion of the pulse start time.

11.6.38 Event 2 Start Time Seconds High Register

Name: EG2STSECH Address: 0x022F

Bit	31	30	29	28	27	26	25	24
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				STSEC	[47:40]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				STSEC	[39:32]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - STSEC[47:32] Start Time in Seconds

This field contains upper 16 bits of the seconds portion of the pulse start time.

Note: These bits are not included in the 64 bit timestamp format used in the SPI timestamp protocol.

11.6.39 Event 2 Pulse Width Register

Name: EG2PW Address: 0x0230

Bit	31	30	29	28	27	26	25	24		
				PW[29:24]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	23	22	21	20	19	18	17	16		
				PW[2	3:16]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	15	14	13	12	11	10	9	8		
				PW[15:8]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
				PW[7:0]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 29:0 - PW[29:0] Pulse Width in Nanoseconds

This field contains duration (in nanoseconds) that the pulse is asserted. If this value is 0, the output is toggled at the start time and remains constant for the idle time.

11.6.40 Event 2 Idle Time Register

Name: EG2IT Address: 0x0231

Bit	31	30	29	28	27	26	25	24			
				IT[29:24]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
Bit	23	22	21	20	19	18	17	16			
				IT[23	3:16]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
Bit	15	14	13	12	11	10	9	8			
				IT[1	5:8]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
				IT[7	7:0]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			

Bits 29:0 - IT[29:0] Idle Time in Nanoseconds

This field contains the time that the pulse is deasserted. If the pulse is configured as repeating, the signal will be reasserted at the completion of this time. A reasserting pulse with pulse width of 0 will toggle again at the end of the idle time. The event is always marked as done at the end of the last idle time.

11.6.41 Event Generator 2 Control Register

Name: EG2CTL Address: 0x0232

Bit	31	30	29	28	27	26	25	24
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				ISREL	REP	AH	STOP	START
Access	RO	RO	R/W	R/W	R/W	R/W	W1S	W1S
Reset	0	0	0	0	0	0	0	0

Bit 4 - ISREL Event Uses Relative Timing

Value	Description
0	Event start time is an absolute time.
1	Event start time is relative to the wall clock time when the START bit is written.

Bit 3 - REP Event Repeats Periodically

Value	Description
0	Event occurs once.
1	Event repeats periodically. The period equals pulse width plus idle time.

Bit 2 - AH Event Output is Active High

Note: This bit has no effect if pulse width = 0 (toggle mode).

Value	Description
0	Event is active low - signal will be driven low at event start for the duration of the pulse width, then will transition to and remain low for the idle time.
1	Event is active high - signal will be driven high at event start for the duration of the pulse width, then will transition to and remain low for the idle time.

Bit 1 - STOP Stop Event

Note: Only events with REPEAT=1 need to be stopped.

Value	Description
0	No effect
1	Stop repeating pulses at the end of the next idle time. The output will remain at the idle value and event done status bit will be set.

Bit 0 - START Start Event

Value	Description
0	No effect
1	Start the event configured in this register.

11.6.42 Event 3 Start Time Nanoseconds Register

Name: EG3STNS Address: 0x0233

Bit	31	30	29	28	27	26	25	24
					STNS	[30:0]		
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				STNS	[30:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				STNS	[30:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				STNS	[30:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 29:0 - STNS[30:0] Pulse Start Time in Nanoseconds

This field contains the nanosecond portion of the start time.

11.6.43 Event 3 Start Time Seconds Low Register

Name: EG3STSECL Address: 0x0234

Bit	31	30	29	28	27	26	25	24
				STSEC	[31:24]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit _	23	22	21	20	19	18	17	16
				STSEC	[23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit _	15	14	13	12	11	10	9	8
				STSEC	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				STSE	C[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 31:0 - STSEC[31:0] Start Time in Seconds

This field contains the lower 32 bits of the seconds portion of the pulse start time.

11.6.44 Event 3 Start Time Seconds High Register

Name: EG3STSECH Address: 0x0235

Bit	31	30	29	28	27	26	25	24
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				STSEC	[47:40]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				STSEC	[39:32]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - STSEC[47:32] Start Time in Seconds

This field contains upper 16 bits of the seconds portion of the pulse start time.

Note: These bits are not included in the 64 bit timestamp format used in the SPI timestamp protocol.

11.6.45 Event 3 Pulse Width Register

Name: EG3PW Address: 0x0236

Bit	31	30	29	28	27	26	25	24
					PW[2	9:24]		
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				PW[2	3:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				PW[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				PW[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 29:0 - PW[29:0] Pulse Width in Nanoseconds

This field contains duration (in nanoseconds) that the pulse is asserted. If this value is 0, the output is toggled at the start time and remains constant for the idle time.

11.6.46 Event 3 Idle Time Register

Name: EG3IT Address: 0x0237

Bit	31	30	29	28	27	26	25	24
					IT[29	9:24]		
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				IT[23	3:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				IT[1	5:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				IT[7	7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 29:0 - IT[29:0] Idle Time in Nanoseconds

This field contains the time that the pulse is deasserted. If the pulse is configured as repeating, the signal will be reasserted at the completion of this time. A reasserting pulse with pulse width of 0 will toggle again at the end of the idle time. The event is always marked as done at the end of the last idle time.

11.6.47 Event Generator 3 Control Register

Name: EG3CTL Address: 0x0238

Bit	31	30	29	28	27	26	25	24
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				ISREL	REP	AH	STOP	START
Access	RO	RO	R/W	R/W	R/W	R/W	W1S	W1S
Reset	0	0	0	0	0	0	0	0

Bit 4 - ISREL Event Uses Relative Timing

Value	Description
0	Event start time is an absolute time.
1	Event start time is relative to the wall clock time when the START bit is written.

Bit 3 - REP Event Repeats Periodically

Value	Description
0	Event occurs once.
1	Event repeats periodically. The period equals pulse width plus idle time.

Bit 2 - AH Event Output is Active High

Note: This bit has no effect if pulse width = 0 (toggle mode).

Value	Description
0	Event is active low - signal will be driven low at event start for the duration of the pulse width, then will transition to and remain low for the idle time.
1	Event is active high - signal will be driven high at event start for the duration of the pulse width, then will transition to and remain low for the idle time.

Bit 1 - STOP Stop Event

Note: Only events with REPEAT=1 need to be stopped.

Value	Description
0	No effect
1	Stop repeating pulses at the end of the next idle time. The output will remain at the idle value and event done status bit will be set.

Bit 0 - START Start Event

Value	Description
0	No effect
1	Start the event configured in this register.

11.6.48 One Pulse-per-Second Control Register

Name: PPSCTL Address: 0x0239

Bit	31	30	29	28	27	26	25	24
Access Reset								
Bit 「	23	22	21	20	19	18	17	16
Access Reset								
Bit	15	14	13	12	11	10	9	8
Access Reset								
Bit	7	6	5	4	3	2	1	0
				PPSPW[4:0]			PPSDIS	PPSEN
Access		RW	RW	RW	RW	RW	W1S	W1S
Reset		0	0	0	0	1	0	0

Bits 6:2 - PPSPW[4:0] Pulse-per-second pulse width

This field sets the 1PPS pulse width based on the 40 nanosecond period of the time stamp clock.

Equation 11-1. 1PPS Pulse Width

 $Pulse_width = 16 \times (PPS_WIDTH + 1) \times 40 \, ns$

The default value of 0 corresponds a pulse width of 640ns.

Bit 1 - PPSDIS 1 pulse-per-second signal disable

Writing 1 to this bit field will cause generation of 1 pulse-per-second to stop at the end of the active one second period. The PPSDONE bit in the SEVSTS register will also be set when the signal generation stops.

Bit 0 - PPSEN 1 pulse-per-second signal enable

Writing a 1 starts generation of 1 pulse-per-second signal

11.6.49 Synchronization Event Interrupt Enable Register

Name: SEVINTEN Address: 0x023A

Note: All bits of this register are W1S.

Bit	31	30	29	28	27	26	25	24
	PADONE	PPSDONE						
Access	W1S	W1S						
Reset	0	0						
Bit	23	22	21	20	19	18	17	16
					EG3DONE	EG2DONE	EG1DONE	EG0DONE
Access					W1S	W1S	W1S	W1S
Reset					0	0	0	0
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
	EC3DA	EC3OF	EC2DA	EC2OF	EC1DA	EC1OF	EC0DA	EC0OF
Access	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S
Reset	0	0	0	0	0	0	0	0

Bit 31 - PADONE Phase Adjust Done

Setting this bit will set the SEV bit of the OA STATUS1 register when phase adjust is done.

Bit 30 - PPSDONE One pulse-per-second signal generation done

Setting this bit will set the SEV bit of the OA_STATUS1 register when the 1PPS signal generation is done.

Bit 30 - PAER Phase adjust error

Setting this bit will set the SEV bit of the OA_STATUS1 register when an error is detected by the phase adjuster.

Bit 19 - EG3DONE Event generator 3 done

Setting this bit will set the SEV bit of the OA_STATUS1 register when the pulse sequence configured on event generator 3 is done.

Bit 18 - EG2DONE Event generator 2 done completed.

Setting this bit will set the SEV bit of the OA_STATUS1 register when the pulse sequence configured on event generator 2 is done.

Bit 17 - EG1DONE Event generator 1 done

Setting this bit will set the SEV bit of the OA_STATUS1 register when the pulse sequence configured on event generator 1 is done.

Bit 16 - EGODONE Event generator 0 done

Setting this bit will set the SEV bit of the OA_STATUS1 register when the pulse sequence configured on event generator 0 is done.

Bit 7 - EC3DA Event capture unit 3 data available

Setting this bit will set the SEV bit of the OA_STATUS1 register when timestamps are available to be read from event capture unit 3.

Bit 6 - EC3OF Event capture unit 3 overflow

Setting this bit will set the SEV bit of the OA_STATUS1 register when event capture unit 3 has failed to capture a timestamp because no more storage was available.

Bit 5 - EC2DA Event capture unit 2 data available.

Setting this bit will set the SEV bit of the OA_STATUS1 register when timestamps are available to be read from event capture unit 2.

Bit 4 - EC2OF Event capture unit 2 overflow

Setting this bit will set the SEV bit of the OA_STATUS1 register when event capture unit 2 has failed to capture a timestamp because no more storage was available.

Bit 3 - EC1DA Event capture unit 1 data available

Setting this bit will set the SEV bit of the OA_STATUS1 register when timestamps are available to be read from event capture unit 2.

Bit 2 - EC10F Event capture unit 1 overflow

Setting this bit will set the SEV bit of the OA_STATUS1 register event capture unit 1 has failed to capture a timestamp because no more storage was available.

Bit 1 - ECODA Event capture unit 0 data available

Setting this bit will set the SEV bit of the OA_STATUS1 register when timestamps are available to be read from event capture unit 0.

Bit 0 - ECOOF Event capture unit 0 overflow

Setting this bit will set the SEV bit of the OA_STATUS1 register when event capture unit 0 has failed to capture a timestamp because no more storage was available.

11.6.50 Synchronization Event Interrupt Disable Register

Name: SEVINTDIS Address: 0x023B

Note: The bits of this register are W1S.

Bit	31	30	29	28	27	26	25	24
	PADONE	PPSDONE						
Access	W1S	W1S		•				
Reset	0	0						
Bit	23	22	21	20	19	18	17	16
					EG3DONE	EG2DONE	EG1DONE	EG0DONE
Access					W1S	W1S	W1S	W1S
Reset					0	0	0	0
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
	EC3DA	EC3OF	EC2DA	EC2OF	EC1DA	EC1OF	EC0DA	EC0OF
Access	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S
Reset	0	0	0	0	0	0	0	0

Bit 31 - PADONE Phase Adjust Done

Setting this bit will prevent any effect on the SEV bit of OA STATUS1 when phase adjust is done.

Bit 30 - PPSDONE One pulse-per-second signal generation done

Setting this bit will prevent any effect on the SEV bit of OA_STATUS1 when one pulse-per-second signal generation has completed.

Bit 30 - PAER Phase adjust error

Setting this bit will prevent any effect on the SEV bit of OA_STATUS1 when an error was detected by the phase adjuster.

Bit 19 - EG3DONE Event generator 3 done

Setting this bit will prevent any effect on the SEV bit of OA_STATUS1 when the pulse sequence configured on event generator 3 is done.

Bit 18 - EG2DONE Event generator 2 done

Setting this bit will prevent any effect on the SEV bit of OA_STATUS1 when the pulse sequence configured on event generator 2 is done.

Bit 17 - EG1DONE Event generator 1 done

Setting this bit will prevent any effect on the SEV bit of OA_STATUS1 when the pulse sequence configured on event generator 1 is done.

Bit 16 - EGODONE Event generator 0 done

Setting this bit will prevent any effect on the SEV bit of OA_STATUS1 when the pulse sequence configured on event generator 0 is done.

Bit 7 - EC3DA Event capture unit 3 data available

Setting this bit will prevent any effect on the SEV bit of OA_STATUS1 when timestamps are available to be read from event capture unit 3.

Bit 6 - EC3OF Event capture unit 3 overflow

Setting this bit will prevent any effect on the SEV bit of OA_STATUS1 when event capture unit 3 has failed to capture a timestamp because no more storage was available.

Bit 5 - EC2DA Event capture unit 2 data available.

Setting this bit will prevent any effect on the SEV bit of OA_STATUS1 when timestamps are available to be read from event capture unit 2.

Bit 4 - EC2OF Event capture unit 2 overflow

Setting this bit will prevent any effect on the SEV bit of OA_STATUS1 when event capture unit 2 has failed to capture a timestamp because no more storage was available.

Bit 3 - EC1DA Event capture unit 1 data available

Setting this bit will prevent any effect on the SEV bit of OA_STATUS1when timestamps are available to be read from event capture unit 2.

Bit 2 - EC10F Event capture unit 1 overflow

Setting this bit will prevent any effect on the SEV bit of OA_STATUS1 when event capture unit 1 has failed to capture a timestamp because no more storage was available.

Bit 1 - ECODA Event capture unit 0 data available

Setting this bit will prevent any effect on the SEV bit of OA_STATUS1 when timestamps are available to be read from event capture unit 0.

Bit 0 – ECOOF Event capture unit 0 overflow

Setting this bit will prevent any effect on the SEV bit of OA_STATUS1 when event capture unit 0 has failed to capture a timestamp because no more storage was available.

11.6.51 Synchronization Event Interrupt Mask Status Register

Name: SEVIM Address: 0x023C

Note: This register is read only.

Bit	31	30	29	28	27	26	25	24
	PADONE	PPSDONE						
Access	RO	RO						
Reset	0	0						
Bit	23	22	21	20	19	18	17	16
					EG3DONE	EG2DONE	EG1DONE	EG0DONE
Access					RO	RO	RO	RO
Reset					0	0	0	0
Bit	15	14	13	12	11	10	9	8
Access Reset								
Bit	7	6	5	4	3	2	1	0
	EC3DA	EC3OF	EC2DA	EC2OF	EC1DA	EC1OF	EC0DA	EC0OF

RO

0

Bit 31 - PADONE Phase Adjust Done

RO

0

Access

Reset

Value	Description
0	When the PADONE bit of the SEVSTS is set, the SEV bit of the OA_STATUS1 register will be set.
1	The PADONE bit of the SEVSTS has no effect on the OA_STATUS1 register.

RO

0

RO

0

RO

0

RO

0

Bit 30 - PPSDONE One pulse-per-second signal generation done

RO

0

RO

0

Value	Description
0	When the PPSDONE bit of the SEVSTS is set, the SEV bit of the OA_STATUS1 register will be set.
1	The PPSDONE bit of the SEVSTS has no effect on the OA_STATUS1 register.

Bit 30 - PAER Phase adjust error

Value	Description
0	When the PAER bit of the SEVSTS is set, the SEV bit of the OA_STATUS1 register will be set.
1	The PAER bit of the SEVSTS has no effect on the OA_STATUS1 register.

Bit 19 - EG3DONE Event generator 3 done

Value	Description
0	When the EG3DONE bit of the SEVSTS is set, the SEV bit of the OA_STATUS1 register will be set.
1	The EG3DONE bit of the SEVSTS has no effect on the OA_STATUS1 register.

Bit 18 - EG2DONE Event generator 2 done

Value	Description
0	When the EG2DONE bit of the SEVSTS is set, the SEV bit of the OA_STATUS1 register will be set.
1	The EG2DONE bit of the SEVSTS has no effect on the OA_STATUS1 register.

Bit 17 - EG1DONE Event generator 1 done

Value	Description
0	When the EG1DONE bit of the SEVSTS is set, the SEV bit of the OA_STATUS1 register will be set.

Value	Description
1	The EG1DONE bit of the SEVSTS has no effect on the OA_STATUS1 register.

Bit 16 - EGODONE Event generator 0 done

Value	Description
0	When the EGODONE bit of the SEVSTS is set, the SEV bit of the OA_STATUS1 register will be set.
1	The EGODONE bit of the SEVSTS has no effect on the OA_STATUS1 register.

Bit 7 - EC3DA Event capture unit 3 data available

Value	Description
0	When the EC3DA bit of the SEVSTS is set, the SEV bit of the OA_STATUS1 register will be set.
1	The EC3DA bit of the SEVSTS has no effect on the OA_STATUS1 register.

Bit 6 - EC3OF Event capture unit 3 overflow

Value	Description
0	When the EC3OF bit of the SEVSTS is set, the SEV bit of the OA_STATUS1 register will be set.
1	The EC3OF bit of the SEVSTS has no effect on the OA STATUS1 register.

Bit 5 - EC2DA Event capture unit 2 data available

Value	Description
0	When the EC2DA bit of the SEVSTS is set, the SEV bit of the OA_STATUS1 register will be set.
1	The EC2DA bit of the SEVSTS has no effect on the OA_STATUS1 register.

Bit 4 - EC2OF Event capture unit 2 overflow

Т

Value	Description
0	When the EC2OF bit of the SEVSTS is set, the SEV bit of the OA_STATUS1 register will be set.
1	The EC2OF bit of the SEVSTS has no effect on the OA STATUS1 register.

Bit 3 - EC1DA Event capture unit 1 data available

Value	Description
0	When the EC1DA bit of the SEVSTS is set, the SEV bit of the OA_STATUS1 register will be set.
1	The EC1DA bit of the SEVSTS has no effect on the OA_STATUS1 register.

Bit 2 - EC10F Event capture unit 1 overflow

	To the superior of the control of th	
Value	Description	
0	When the EC1OF bit of the SEVSTS is set, the SEV bit of the OA_STATUS1 register will be set.	
1	The EC1OF bit of the SEVSTS has no effect on the OA STATUS1 register.	

Bit 1 - ECODA Event capture unit 0 data available

Value	Description
0	When the ECODA bit of the SEVSTS is set, the SEV bit of the OA_STATUS1 register will be set.
1	The ECODA bit of the SEVSTS has no effect on the OA STATUS1 register.

Bit 0 - ECOOF Event capture unit 0 overflow

Value	Description
0	When the ECOOF bit of the SEVSTS is set, the SEV bit of the OA_STATUS1 register will be set.
1	The ECOOF bit of the SEVSTS has no effect on the OA_STATUS1 register.

11.6.52 Synchronization Event Status Register

Name: SEVSTS Address: 0x023D

This register indicates all event status bits set since this register was last read.

Important: All bits are cleared upon read.

Bit	31	30	29	28	27	26	25	24
	PADONE	PPSDONE						
Access	RC	RC						
Reset	0	0						
Bit	23	22	21	20	19	18	17	16
					EG3DONE	EG2DONE	EG1DONE	EG0DONE
Access					RC	RC	RC	RC
Reset					0	0	0	0
Bit _	15	14	13	12	11	10	9	8
Access								
Reset								
Bit _	7	6	5	4	3	2	1	0
	EC3DA	EC3OF	EC2DA	EC2OF	EC1DA	EC1OF	EC0DA	EC0OF
Access	RC	RC	RC	RC	RC	RC	RC	RC
Reset	0	0	0	0	0	0	0	0

Bit 31 - PADONE Phase Adjust done

This bit is set to indicate that phase adjust has completed. This bit will be cleared on read.

Bit 30 - PPSDONE One pulse-per-second signal generation done

This bit is set to indicate that the pulse per second signal generation has completed. This bit will be cleared on read.

Bit 30 - PAER Phase adjust error

This bit is set to indicate that an error was detected by the phase adjuster. This bit will be cleared on read.

Bit 19 - EG3DONE Event generator 3 done

This bit is set to indicate when event generator 3 has completed generation of a pulse or pulse sequence. This bit will be cleared on read.

Bit 18 - EG2DONE Event generator 2 done

This bit is set to indicate when event generator 2 has completed generation of a pulse or pulse sequence. This bit will be cleared on read.

Bit 17 - EG1DONE Event generator 1 done

This bit is set to indicate when event generator 1 has completed generation of a pulse or pulse sequence. This bit will be cleared on read.

Bit 16 - EGODONE Event generator 0 done

This bit is set to indicate when event generator 0 has completed generation of a pulse or pulse sequence. This bit will be cleared on read.

Bit 7 - EC3DA Event capture unit 3 data available

This bit is set to indicate that timestamps are available to be read from event capture unit 3. This bit will be cleared on read.

Bit 6 - EC3OF Event capture unit 3 overflow

This bit is set to indicate that event capture unit 3 has failed to capture a timestamp because no more storage was available. This bit will be cleared on read.

Bit 5 - EC2DA Event capture unit 2 data available

This bit is set to indicate that timestamps are available to be read from event capture unit 2. This bit will be cleared on read.

Bit 4 - EC2OF Event capture unit 2 overflow

This bit is set to indicate that event capture unit 2 has failed to capture a timestamp because no more storage was available. This bit will be cleared on read.

Bit 3 - EC1DA Event capture unit 1 data available

This bit is set to indicate that timestamps are available to be read from event capture unit 1. This bit will be cleared on read.

Bit 2 - EC10F Event capture unit 1 overflow

This bit is set to indicate that event capture unit 1 has failed to capture a timestamp because no more storage was available. This bit will be cleared on read.

Bit 1 - ECODA Event capture unit 0 data available

This bit is set to indicate that timestamps are available to be read from event capture unit 0. This bit will be cleared on read.

Bit 0 - ECOOF Event capture unit 0 overflow

This bit is set to indicate that event capture unit 0 has failed to capture a timestamp because no more storage was available. This bit will be cleared on read.

12. Data Sheet Revision History

Table 12-1. Data Sheet Revision History

Revision Level & Date	Section/Figure/Entry	Correction
DS60001734D (Aug-2023)	All	Update for silicon revision 2 (product revision B1)
DS60001734C (Feb-2023)	Table 9.4	Updated Power Consumption for LAN8651.
DS60001734B (Feb-2023)	All	Update for silicon revision 1 (product revision B0)
DS60001734A (Nov-2021)	All	Initial for silicon revision 0 (product revision A0)

Microchip Information

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- **General Technical Support** Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- **Business of Microchip** Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

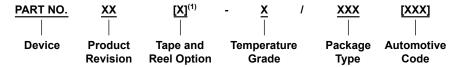
Microchip's product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Embedded Solutions Engineer (ESE)
- Technical Support


Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Product Identification System

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Device:		Ethernet Controller, 3.3/1.8V supplies Ethernet Controller, single 3.3V supply
Product Revision:	XX	Two character code specifying product revision
Tape and Reel Option:	Blank	Standard packaging (tray)
	Т	Tape and Reel ⁽¹⁾
Temperature Grade:	Е	-40°C to +125°C Extended range
Package Type:	LMX	32-pin VQFN
Automotive Code:	Vxx	Optional three character code with "V" prefix specifying automotive product

- LAN8650B1-E/LMXVAO 10BASE-T1S MAC-PHY Ethernet Controller, 3.3/1.8V supply, Revision B1, Standard tray packaging, 32-VQFN package, -40°C to +125°C, automotive
- LAN8650B1T-E/LMX 10BASE-T1S MAC-PHY Ethernet Controller, 3.3/1.8V supply, Revision B1, Tape and Reel packaging, 32-VQFN package, -40°C to +125°C
- LAN8651B1T-E/LMXVAO 10BASE-T1S MAC-PHY Ethernet Controller, 3.3V supply, Revision B1,Tape and Reel packaging, 32-VQFN package, -40°C to +125°C, automotive
- LAN8651B1-E/LMX 10BASE-T1S MAC-PHY Ethernet Controller, 3.3V supply, Revision B1, Standard tray packaging, 32-VQFN package, -40°C to +125°C

Note:

1. Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is "unbreakable".
 Code protection is constantly evolving. Microchip is committed to continuously improving the code protection features of our products.

Legal Notice

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at www.microchip.com/en-us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, TimeCesium, TimeHub, TimePictra, TimeProvider, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, EyeOpen, GridTime, IdealBridge, IGaT, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, MarginLink, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mSiC, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, Power MOS IV, Power MOS 7, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, Turing, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2023, Microchip Technology Incorporated and its subsidiaries. All Rights Reserved.

ISBN: 978-1-6683-3007-4

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

Quality Management System

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS	ASIA/PACIFIC	ASIA/PACIFIC	EUROPE
Corporate Office	Australia - Sydney	India - Bangalore	Austria - Wels
355 West Chandler Blvd.	Tel: 61-2-9868-6733	Tel: 91-80-3090-4444	Tel: 43-7242-2244-39
handler, AZ 85224-6199	China - Beijing	India - New Delhi	Fax: 43-7242-2244-393
el: 480-792-7200	Tel: 86-10-8569-7000	Tel: 91-11-4160-8631	Denmark - Copenhagen
ax: 480-792-7277	China - Chengdu	India - Pune	Tel: 45-4485-5910
echnical Support:	Tel: 86-28-8665-5511	Tel: 91-20-4121-0141	Fax: 45-4485-2829
ww.microchip.com/support	China - Chongqing	Japan - Osaka	Finland - Espoo
Veb Address:	Tel: 86-23-8980-9588	Tel: 81-6-6152-7160	Tel: 358-9-4520-820
ww.microchip.com	China - Dongguan	Japan - Tokyo	France - Paris
tlanta	Tel: 86-769-8702-9880	Tel: 81-3-6880- 3770	Tel: 33-1-69-53-63-20
uluth, GA	China - Guangzhou	Korea - Daegu	Fax: 33-1-69-30-90-79
el: 678-957-9614	Tel: 86-20-8755-8029	Tel: 82-53-744-4301	Germany - Garching
ax: 678-957-1455	China - Hangzhou	Korea - Seoul	Tel: 49-8931-9700
ustin, TX	Tel: 86-571-8792-8115	Tel: 82-2-554-7200	Germany - Haan
el: 512-257-3370	China - Hong Kong SAR	Malaysia - Kuala Lumpur	Tel: 49-2129-3766400
oston	Tel: 852-2943-5100	Tel: 60-3-7651-7906	Germany - Heilbronn
estborough, MA	China - Nanjing	Malaysia - Penang	Tel: 49-7131-72400
el: 774-760-0087	Tel: 86-25-8473-2460	Tel: 60-4-227-8870	Germany - Karlsruhe
ax: 774-760-0088	China - Qingdao	Philippines - Manila	Tel: 49-721-625370
hicago	Tel: 86-532-8502-7355	Tel: 63-2-634-9065	Germany - Munich
asca, IL	China - Shanghai	Singapore	Tel: 49-89-627-144-0
el: 630-285-0071	Tel: 86-21-3326-8000	Tel: 65-6334-8870	Fax: 49-89-627-144-44
ax: 630-285-0075	China - Shenyang	Taiwan - Hsin Chu	Germany - Rosenheim
allas	Tel: 86-24-2334-2829	Tel: 886-3-577-8366	Tel: 49-8031-354-560
ddison, TX	China - Shenzhen	Taiwan - Kaohsiung	Israel - Ra'anana
l: 972-818-7423	Tel: 86-755-8864-2200	Tel: 886-7-213-7830	Tel: 972-9-744-7705
x: 972-818-2924	China - Suzhou	Taiwan - Taipei	Italy - Milan
etroit	Tel: 86-186-6233-1526	Tel: 886-2-2508-8600	Tel: 39-0331-742611
ovi, MI	China - Wuhan	Thailand - Bangkok	Fax: 39-0331-466781
el: 248-848-4000	Tel: 86-27-5980-5300	Tel: 66-2-694-1351	Italy - Padova
ouston, TX	China - Xian	Vietnam - Ho Chi Minh	Tel: 39-049-7625286
l: 281-894-5983	Tel: 86-29-8833-7252	Tel: 84-28-5448-2100	Netherlands - Drunen
dianapolis	China - Xiamen		Tel: 31-416-690399
oblesville, IN	Tel: 86-592-2388138		Fax: 31-416-690340
l: 317-773-8323	China - Zhuhai		Norway - Trondheim
x: 317-773-5453	Tel: 86-756-3210040		Tel: 47-72884388
l: 317-536-2380			Poland - Warsaw
s Angeles			Tel: 48-22-3325737
ssion Viejo, CA			Romania - Bucharest
l: 949-462-9523			Tel: 40-21-407-87-50
x: 949-462-9608			Spain - Madrid
el: 951-273-7800			Tel: 34-91-708-08-90
leigh, NC			Fax: 34-91-708-08-91
el: 919-844-7510			Sweden - Gothenberg
ew York, NY			Tel: 46-31-704-60-40
el: 631-435-6000			Sweden - Stockholm
in Jose, CA			Tel: 46-8-5090-4654
l: 408-735-9110			UK - Wokingham
l: 408-436-4270			Tel: 44-118-921-5800
nnada - Toronto			Fax: 44-118-921-5820
			147, 17110 321-3020