SLLS032B - DECEMBER 1987 - REVISED MAY 1995

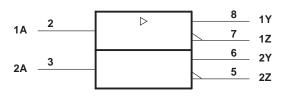
- Meets or Exceeds the Requirements of ANSI Standard EIA/TIA-422-B and ITU Recommendation V.11
- Designed to Operate at 20 Mbaud or Higher
- TTL-and CMOS-Input Compatibility
- Single 5-V Supply Operation
- Output Short-Circuit Protection
- Improved Replacement for the μA9638

V_{CC} 1 8 1Y 1A 2 7 1 1Z 2A 3 6 2Y GND 4 5 2Z

description

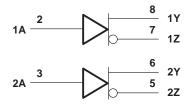
The SN75ALS191 is a dual, high-speed, differential line driver designed to meet ANSI Standard EIA/TIA-422-B and ITU Recommendation V.11. The inputs are TTL- and CMOS-compatible and have input clamp diodes. Schottky-diode-clamped transistors minimize propagation delay time. This device operates from a single 5-V power supply and is supplied in eight-pin packages.

The SN75ALS191 is characterized for operation from 0°C to 70°C.


FUNCTION TABLE (each driver)

INPUTS	OUTPUTS			
Α	Y	Z		
Н	Н	L		
L	L	Н		

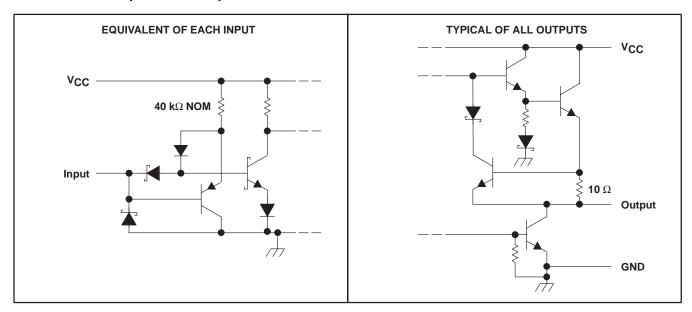
H = high level, L = low level,


Z = high impedance

logic symbol†

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLLS032B - DECEMBER 1987 - REVISED MAY 1995

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC} (see Note 1)	
Input voltage, V _I	7 V
Continuous total dissipation	See Dissipation Rating Table
Operating free-air temperature range, T _A	
Storage temperature range, T _{stg}	– 65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values except differential output voltage (VOD) are with respect to network ground terminal.

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{\scriptsize A}} \leq 25^{\circ}\mbox{\scriptsize C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW
Р	1000 mW	8.0 mW/°C	640 mW

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.75	5	5.25	V
High-level input voltage, VIH	2			V
Low-level input voltage, V _{IL}			0.8	V
High-level output current, IOH			- 50	mA
Low-level output current, IOL			50	mA
Operating free-air temperature, T _A	0		70	°C

SLLS032B - DECEMBER 1987 - REVISED MAY 1995

electrical characteristics over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS			MIN	TYP [†]	MAX	UNIT
VIK	Input clamp voltage	$V_{CC} = 4.75 \text{ V},$	I _I = -18 mA			-1	-1.2	V
.,	High-level output voltage	$V_{CC} = 4.75 \text{ V},$	V _{IH} = 2 V,	I _{OH} = - 10 mA	2.5	3.3		V
VOH		V _{IL} = 0.8 V		I _{OH} = - 40 mA	2			V
VOL	Low-level output voltage	V _{CC} = 4.75 V, I _{OL} = 40 mA	V _{IH} = 2 V,	V _{IL} = 0.8 V,			0.5	V
IVOD1	Differential output voltage	V _{CC} = 5.25 V,	IO = 0				2 V _{OD2}	V
VOD2	Differential output voltage				2			V
Δ VOD	Change in magnitude of differential output voltage‡	V _{CC} = 4.75 V to 5.25 V, See Figure 1		R _L = 100 Ω,			± 0.4	V
Voc	Common-mode output voltage§			_			3	V
Δ Voc	Change in magnitude of common-mode output voltage‡						± 0.4	V
				V _O = 6 V		0.1	100	
I _O	Output current with power off	$V_{CC} = 0$		$V_0 = -0.25 \text{ V}$		-0.1	-100	μΑ
				$V_0 = -0.25 \text{ V to 6 V}$			±100	
lį	Input current	$V_{CC} = 5.25 \text{ V},$	V _I = 5.5 V				50	μΑ
lіН	High-level input current	$V_{CC} = 5.25 \text{ V},$	V _I = 2.7 V				25	μΑ
I _I L	Low-level input current	V _{CC} = 5.25 V,	V _I = 0.5 V				200	μΑ
los	Short-circuit output current¶	V _{CC} = 5.25 V,	VO = 0		-50		-150	mA
ICC	Supply current (all drivers)	$V_{CC} = 5.25 \text{ V},$	No load,	All inputs at 0 V		32	40	mA

switching characteristics over recommended operating free-air temperature range, $V_{CC} = 5 \text{ V}$

	PARAMETER	TEST CONDITIONS				TYP#	MAX	UNIT
t _d (OD)	Differential-output delay time					3.5	7	ns
t _t (OD)	Differential-output transition time	$C_L = 15 pF$,	$R_L = 100 \Omega$,	See Figure 2		3.5	7	ns
	Skew					1.5	4	ns

[#] Typical values are at $T_A = 25^{\circ}C$.

[†] All typical values are at V_{CC} = 5 V and T_A = 25°C. ‡ $|V_{OD}|$ and $|V_{OC}|$ are the changes in magnitude of V_{OD} and V_{OC} , respectively, that occur when the input is changed from a high level to a low

[§] In ANSI Standard EIA/TIA-422-B, VOC, which is the average of the two output voltages with respect to ground, is called output offset voltage,

[¶] Only one output at a time should be shorted, and duration of the short circuit should not exceed one second.

PARAMETER MEASUREMENT INFORMATION

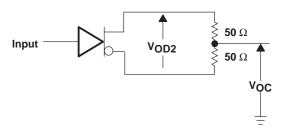
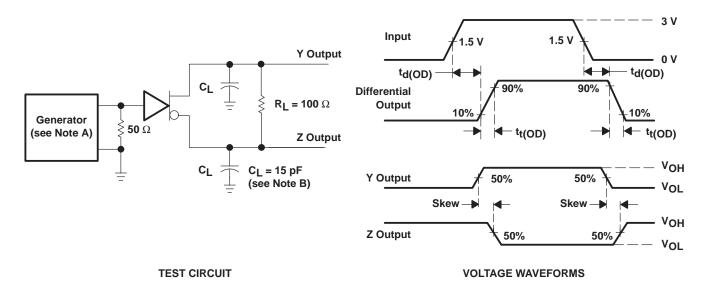



Figure 1. Differential and Common-Mode Output Voltages

NOTES: A. The input pulse generator has the following characteristics: $Z_O = 50~\Omega$, PRR $\leq 500~kHz$, $t_W = 100~ns$, $t_T = \leq 5~ns$.

B. C_L includes probe and jig capacitance.

Figure 2. Test Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated

* Texas Instruments	THE WORLI	D LEADER I	N DSP AND	ANALOG
Products ©	Developmen	t Tools 💌	Applicat	ions 🔻
Search GO	☐ Advanced Search ☐ Tech Support	☐ TI Home ☐ Comments	□ TI&ME □ Site Map	□ Employment □ Tl Global

PRODUCT FOLDER | PRODUCT INFO: FEATURES | DESCRIPTION | DATASHEETS | PRICING/AVAILABILITY | APPLICATION NOTES

PRODUCT SUPPORT: APPLICATIONS

SN75ALS191, Dual Differential Line Driver

DEVICE STATUS: ACTIVE

PARAMETER NAME	SN75ALS191			
Drivers Per Package	2			
Driver tpd (ns)	7			
Supply Voltage(s) (V)	5			
ICC (max) (mA)	40			
Footprint	uA9638			

FEATURES Back to Top

- Meets or Exceeds the Requirements of ANSI Standard EIA/TIA-422-B and ITU Recommendation V.11
- Designed to Operate at 20 Mbaud or Higher
- TTL-and CMOS-Input Compatibility
- Single 5-V Supply Operation
- Output Short-Circuit Protection
- Improved Replacement for the uA9638

DESCRIPTION<u>Back to Top</u>

The SN75ALS191 is a dual, high-speed, differential line driver designed to meet ANSI Standard EIA/TIA-422-B and ITU Recommendation V.11. The inputs are TTL- and CMOS-compatible and have input clamp diodes. Schottky-diode-clamped transistors minimizes propagation delay time. This device operates from a single 5-V power supply and is supplied in 8-pin packages.

The SN75ALS191 is characterized for operation from 0°C to 70°C.

TECHNICAL DOCUMENTS

Back to Top

To view the following documents, <u>Acrobat Reader 3.x</u> is required.

To download a document to your hard drive, right-click on the link and choose 'Save'.

DATASHEET Back to Top

Full datasheet in Acrobat PDF: slls032b.pdf (76 KB) (Updated: 05/01/1995)

Full datasheet in Zipped PostScript: slls032b.psz (71 KB)

APPLICATION NOTES

▲Back to Top

- <u>422 and 485 Standards Overview and System Configurations</u> (SLLA070A Updated: 05/25/2000)
- A Statistical Survey of Common-Mode Noise (SLLA057 Updated: 12/22/1999)
- Comparing Bus Solutions (SLLA067 Updated: 03/02/2000)
- Jitter Analysis (SLLA075 Updated: 03/30/2000)
- Skew Definitions (SLLA060 Updated: 08/03/1999)

PRICING/AVAILABILITY

▲Back to Top

ORDERABLE DEVICE	PACKAGE	<u>PINS</u>	TEMP (°C)	<u>STATUS</u>	BUDGETARY PRICE US\$/UNIT QTY=1000+	PACK QTY	PRICING/AVAILABILITY
SN75ALS191D	<u>D</u>	8	0 TO 70	ACTIVE	1.84	75	Check stock or order
SN75ALS191DR	<u>D</u>	8	0 TO 70	ACTIVE	1.87	2500	Check stock or order
SN75ALS191P	<u>P</u>	8	0 TO 70	ACTIVE	1.50	50	Check stock or order
SN75ALS191PS	<u>PS</u>	8	0 TO 70	OBSOLETE			

Table Data Updated on: 11/19/2000

© Copyright 2000 Texas Instruments Incorporated. All rights reserved. <u>Trademarks | Privacy Policy | Important Notice</u>