SLLS007C - JULY 1985 - REVISED MAY 1995 - Meets or Exceeds the Requirements of ANSI Standard EIA/TIA-422-B and ITU Recommendation V.11 - Designed to Operate Up to 20 Mbaud - 3-State TTL Compatible - Single 5-V Supply Operation - High Output Impedance in Power-Off Condition - Complementary Output Enable Inputs - Improved Replacement for the AM26LS31 ## description These four differential line drivers are designed for data transmission over twisted-pair or parallel-wire transmission lines. They meet the requirements of ANSI Standard EIA/TIA-422-B and ITU Recommendations V.11 and are compatible with 3-state TTL circuits. Advanced low-power Schottky technology provides high speed without the usual power penalties. Standby supply current is typically only 26 mA, while typical propagation delay time is less than 10 ns. High-impedance inputs maintain low input currents, less than 1 μ A for a high level and less than 100 μ A for a low level. Complementary enable inputs, G and \overline{G} , allow these devices to be enabled at either a high input level or low input level. The SN75ALS192 is capable of data rates in excess of 20 megabits per second and is designed to operate with the SN75ALS193 quadruple line receiver. The SN55ALS192 is also capable of data rates in excess of 20 megabits per second and designed to operate with the SN55ALS193; however, it may be limited to a lower bit rate based on the temperature (refer to the dissipation rating table and Figure 15). The SN55ALS192 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN75ALS192 is characterized for operation from 0°C to 70°C. ## SN55ALS192...J OR W PACKAGE SN75ALS192...D OR N PACKAGE (TOP VIEW) # SN55ALS192...FK PACKAGE (TOP VIEW) NC - No internal connection ### FUNCTION TABLE (each driver) | | INPUT | ENA | BLES | OUT | PUTS | |---|-------|-----|------|-----|------| | | Α | G | Ĝ | Υ | Ž | | į | H | Н | X | Н | L | | 1 | L | Н | X | į L | н | | ı | н | Х | L | Н | L | | | L | X | L | L | Н | | | X | L | Н | Z | Z | H = high level. L = low level, Z = high impedance (off), X = irrelevant SLLS007C - JULY 1985 - REVISED MAY 1995 ## logic symbol† ## logic diagram (positive logic) Pin numbers shown are for the D, J, N, and W packages. ## schematics of inputs and outputs [†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. SLLS007C - JULY 1985 - REVISED MAY 1995 # absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† | Supply voltage, V _{CC} (see Note 1) Input voltage, V _I Off-state output voltage | 7 V | |---|-----------------| | Continuous total dissipation | | | Operating free-air temperature range, T _A : SN55ALS192 | | | SN75ALS192 | 0°C to 70°C | | Storage temperature range, T _{stq} | – 65°C to 150°C | | Case temperature for 60 seconds, T _C : FK package | 260°C | | Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package | | | Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, N, or W pa | | [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE 1: All voltage values except differential output voltage, VOD, are with respect to network ground terminal. #### DISSIPATION RATING TABLE | PACKAGE | T _A ≤ 25°C
POWER RATING | DERATING FACTOR
ABOVE TA = 25°C | T _A = 70°C
POWER RATING | T _A = 125°C
POWER RATING | | | |---------|---------------------------------------|------------------------------------|---------------------------------------|--|--|--| | D | 950 mW | 7.6 mW/°C | 608 mW | N/A | | | | FK | 1375 mW | 11.0 mW/°C | 880 mW | 275 mW | | | | j† | 1375 mW | 11.0 mW/°C | 880 mW | 275 mW | | | | N | 1150 mW | 9.2 mW/°C | 736 mW | N/A | | | | w | 1000 mW | 8.0 mW/°C | 640 mW | 200 mW | | | [†] In the J package, the SN55ALS192 chips are either alloy or silver glass mounted. ## recommended operating conditions | | SN | SN55ALS192 | | | SN75ALS192 | | | |------------------------------------|------|------------|------|------|------------|------|------| | | MIN | NOM | MAX | MIN | NOM | MAX | UNIT | | Supply voltage, V _{CC} | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | ٧ | | High level input voltage, VIH | 2 | | | 2 | | | ٧ | | Low-level input voltage, VIL | | | 8.0 | | | 8.0 | ٧ | | High-level output current, IOH | | | - 20 | | - | ~ 20 | mA | | Low-level output current, IOL | | | 20 | | | 20 | mA | | Operating free-air temperature, TA | - 55 | | 125 | 0 | | 70 | °C | SLLS007C - JULY 1985 - REVISED MAY 1995 # electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) | PARAMETER | | TEST CONDITIONST | | SN55ALS192 | | | SN7 | UNIT | | | |---------------------|---|---|------------------------|-------------------------------|------|-------|-------------------------------|------|-------|-------------| | | | | | MIN | TYP# | MAX | MIN | TYP‡ | MAX | UNII | | Vik | Input clamp voltage | V _{CC} = MIN, | lj = -18 mA | | | -1.5 | | | -1.5 | ٧ | | Vон | High-level output voltage | V _{CC} = MIN, | IOH = ~ 20 mA | 2.4 | | | 2.5 | | | ٧ | | VOL | Low-level output voltage | V _{CC} = MiN, | IOL = 20 mA | | | 0.5 | | | 0.5 | ٧ | | ٧o | Output voltage | V _{CC} = MAX, | IO = 0 | 0 | | 6 | 0 | | 6 | V | | VOD1 | Differential output voltage | V _{CC} = MIN, | 10 = 0 | 1.5 | | 6 | 1.5 | | 6 | · V | | IV _{OD2} I | Differential output voltage | R _L = 100 Ω, | See Figure 1 | 1/2 V _{OD1}
or 2§ | | | 1/2 V _{OD1}
or 2§ | | | ٧ | | Δίνορί | Change in magnitude of differential output voltage | | 2. See Figure 1 | | | ± 0.2 | | | ± 0.2 | > | | Voc | Common-mode output voltage# | RL≖100Ω, | | | | ± 3 | | | ±3 | > | | ΔIVOCI | Change in magnitude of common-mode output voltage ¶ | | | | • | ± 0.2 | | • | ± 0.2 | V | | | Ordered automat with navior off | V 0 | VO = 6 V | | | 100 | | | 100 | | | Ю | Output current with power off | VCC = 0 | VO = - 0.25 V | | | -100 | | | -100 | μА | | 1 | Off-state (high-impedance | V MAY | V _O ≈ 0.5 V | | | -20 | | | -20 | μА | | loz | state) output current | VCC = MAX | V _O = 2.5 V | | | 20 | | | 20 | | | lι | Input current at maximum input voltage | V _{CC} = MAX, | V ₁ = 7 V | | | 100 | | | 100 | μА | | ŀН | High-level input current | V _{CC} = MAX, | V ₁ = 2.7 V | | | 20 | | | 20 | μА | | ηL | Low-level input current | V _{CC} = MAX, | V _I = 0.4 V | | | - 200 | | | - 200 | _μΑ_ | | los | Short-circuit output current ¹ | V _{CC} = MAX | | - 30 | | -150 | - 30 | | - 150 | mA | | lcc | Supply current (all drivers) | V _{CC} = MAX,
All outputs dis | abled | | 26 | 45 | | 26 | 45 | mA | [†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. # switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (see Figure 2) | PARAMETER | | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |------------------|--|--|-----|-----|-----|------| | ^t PLH | Propagation delay time, low-to-high-level output | | | 6 | 13 | ns | | t _{PHL} | Propagation delay time, high-to-low-level output | S1 and S2 open, CL = 30 | pF | 9 | 14 | ns | | | Output-to-output skew | \square | | 3 | 6 | ns | | ^t PZH | Output enable time to high level | S1 open and S2 closed | | 11 | 15 | ns | | tPZL | Output enable time to low level | S1 closed and S2 open | | 16 | 20 | ns | | ^t PHZ | Output disable time from high level | S1 open and S2 closed, C _L = 10 | pF | 8 | 15 | ´ ns | | tPLZ | Output disable time from low level | S1 and S2 closed, C _L = 10 | pF | 18 | 20 | ns | [‡] All typical values are at $V_{CC} = 5 \text{ V}$ and $T_A = 25 ^{\circ}\text{C}$. [§] The minimum V_{OD2} with a 100- Ω load is either 1/2 V_{OD1} or 2 V, whichever is greater. IVOD | and | VOC | are the changes in magnitude of VOD and VOC, respectively, that occur when the input is changed from a high level to a low level. [#] In ANSI Standard EIA/TIA-422-B, VOC, which is the average of the two output voltages with respect to ground, is called output offset voltage, VOs. V_{OS} . It Not more than one output should be shorted at a time, and duration of the short circuit should not exceed one second. ## PARAMETER MEASUREMENT INFORMATION Figure 1. Differential and Common-Mode Output Voltages PROPAGATION DELAY TIMES AND SKEW **ENABLE AND DISABLE TIMES** #### **VOLTAGE WAVEFORMS** **TEST CIRCUIT** NOTES: A. When measuring propagation delay times and skew, switches S1 and S2 are open. - B. Each enable is tested separately. - C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. - D. Ct includes probe and jig capacitance. - E. All input pulses are supplied by generators having the following characteristics: PRR ≤ 1 MHz, Z_O ≈ 50 Ω, t_f ≤ 15 ns, and t_f ≤ 6 ns. Figure 2. Test Circuit and Voltage Waveforms ## TYPICAL CHARACTERISTICS† NOTE A: The A input is connected to VCC during the testing of the Y outputs and to ground during the testing of the Z outputs. Figure 5 † Data for temperatures below 0°C and above 70°C and below 4.75 V and above 5.25 V are applicable to SN55ALS192 circuits only. Figure 6 ## TYPICAL CHARACTERISTICS[†] † Data for temperatures below 0°C and above 70°C, and below 4.75 V and above 5.25 V, are applicable to SN55ALS192 circuits only. NOTES: A. The A input is connected to V_{CC} during the testing of the Y outputs and to ground during the testing of the Z outputs. B. The A input is connected to GND during the testing of the Y outputs and to V_{CC} during the testing of the Z outputs. ## TYPICAL CHARACTERISTICS† LOW-LEVEL OUTPUT VOLTAGE v8 LOW-LEVEL OUTPUT CURRENT Figure 12 Figure 11 NOTE A: The A input is connected to GND during the testing of the Y outputs and to V_{CC} during the testing of the Z outputs. # SUPPLY CURRENT vs SUPPLY VOLTAGE 40 A Inputs Open or Grounded Cuttouts Disabled Figure 14 † Data for temperatures below 0°C and above 70°C, and below 4.75 V and above 5.25 V, are applicable to SN55ALS192 circuits only. SLLS007C - JULY 1985 - REVISED MAY 1995 ## TYPICAL CHARACTERISTICS ## SUPPLY CURRENT vs FREQUENCY Figure 15