2.7 V TO 5.5 V, 12- AND 10-BIT OCTAL DAC IN WAFER CHIP SCALE PACKAGE #### **FEATURES** - Eight Voltage Output DACs in One Package - TLV5610IYE ... 12-Bit - TLV5608IYE ... 10-Bit - Programmable Settling Time vs Power Consumption - 1 μs in Fast Mode - $3 \mu s$ in Slow Mode - Compatible With TMS320[™] DSP Family and SPI Serial Ports - Monotonic Over Temperature - Low Power Consumption: - 18 mW in Slow Mode at 3 V - 48 mW in Fast Mode at 3 V - Power Down Mode - Buffered, High Impedance Reference Inputs - Data Output for Daisy Chainin #### **APPLICATIONS** - Digital Servo Control Loops - Digital Offset and Gain Adjustment - Industrial Process Control - Machine and Motion Control Devices - Mass Storage Devices #### **DESCRIPTION** The TLV5610IYE and TLV5608IYE are pin compatible eight channel 12-/10-bit voltage output DACs each with a flexible serial interface. The serial interface allows glueless interface to TMS320 and SPI, QSPI, and Microwire serial ports. It is programmed with a 16-bit serial string containing 4 control and 12 data bits. Additional features are a power-down mode, an LDAC input for simultaneous update of all eight DAC outputs, and a data output which can be used to cascade multiple devices. The resistor string output voltage is buffered by a rail-to-rail output amplifier with a programmable settling time to allow the designer to optimize speed vs power dissipation. The buffered, high-impedance reference input can be connected to the supply voltage. The TLV5610IYE and TLV5608IYE implemented with a CMOS process and are available in a 20-terminal WCS package. The TLV5610IYE and TLV5608IYE are characterized for operation from -40°C to 85°C in a wire-bonded small outline (SOIC) package. A Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. TMS320 DSP is a trademark of Texas Instruments. These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. # **AVAILABLE OPTIONS** | | PACKAGE | |---------------|----------------| | TA | WCS(1)
(YE) | | -40°C to 85°C | TLV5610IYE | | -40°C 10 65°C | TLV5608IYE | ⁽¹⁾ Wafer chip scale package. See Figure 13. # **FUNCTIONAL BLOCK DIAGRAM** # **Terminal Functions** | TERMIN | AL | | DECODINE | |-----------|---------------|-----|---| | NAME | NO. | 1/0 | DESCRIPTION | | AGND | 10 | Р | Analog ground | | AV_{DD} | 11 | Р | Analog power supply | | DGND | 1 | Р | Digital ground | | DIN | 2 | 1 | Digital serial data input | | DOUT | 19 | 0 | Digital serial data output | | DV_{DD} | 20 | Р | Digital power supply | | FS | 4 | I | Frame sync input | | LDAC | 18 | 1 | Load DAC. The DAC outputs are only updated, if this signal is low. It is an asynchronous input. | | MODE | 17 | I | DSP/ μ C mode pin. High = μ C mode, NC = DSP mode. | | PRE | 5 | I | Preset input | | REF | 16 | I | Voltage reference input | | SCLK | 3 | I | Serial clock input | | OUTA-OUTH | 12–15,
6–9 | 0 | DAC outputs A, B, C, D, E, F, G and H | TLV5608IYE # **ABSOLUTE MAXIMUM RATINGS** over operating free-air temperature range unless otherwise noted(1) | | UNIT | |--|-----------------------------------| | Supply voltage, (AV _{DD} , DV _{DD} to GND) | 7 V | | Reference input voltage range | - 0.3 V to AV _{DD} + 0.3 | | Digital input voltage rang | – 0.3 V to DV _{DD} + 0.3 | | Operating free-air temperature range, TA | −40°C to 85°C | ⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. #### RECOMMENDED OPERATING CONDITIONS | | | MIM | TYP | MAX | UNIT | |---|-----------------------------------|-----|-------|-----------|------| | 0 1 1 1 1 1 1 | 5-V operation | 4.5 | 5 | 5.5 | V | | Supply voltage, AV _{DD} , AV _{DD} | 3-V operation | 2.7 | 3 | 3.3 | V | | High level digital input, V _{IH} | DV _{DD} = 2.7 V to 5.5 V | 2 | | | V | | Low level digital input, V _{IL} | DV _{DD} = 2.7 V to 5.5 V | | | 0.8 | V | | 5.4 | AV _{DD} = 5 V | GNE | 4.096 | AV_{DD} | ., | | Reference voltage, V _{ref} | AV _{DD} = 3 V | GNE | 2.048 | AV_{DD} | V | | Load resistance, R _L | | 2 | | | kΩ | | Load capacitance, C _L | | | | 100 | pF | | Clock frequency, f _{CLK} | | | | 30 | MHz | | Operating free-air temperature, T _A | | -40 |) | 85 | °C | #### **ELECTRICAL CHARACTERISTICS** over operating free-air temperature range unless otherwise noted(1) | POWER | R-SUPPLY | | | | | | | | | |--------|------------------------------|-------------------------------|----------------------|--------------|-----------|-----|------|-----|------| | | PARAMETER | | TEST CONDIT | IONS | | MIN | TYP | MAX | UNIT | | | D | No load, | V _{re} | f = 4.096 V, | Fast | | 16 | 21 | A | | IDD | Power supply current | All inputs = DV _{DD} | or GND | • | Slow | | 6 | 8 | mA | | | Power-down supply current | | | | | | 0.1 | | μΑ | | POR | Power on threshold | | | | | | 2 | | V | | PSRR | Power supply rejection ratio | Full scale, See No | ote 1 | | | | -60 | | dB | | STATIC | DAC SPECIFICATIONS | | | | | | | | | | | 5 1 4 | TLV5610IYE | | | | | 12 | | | | | Resolution | TLV5608IYE | | | | | 10 | | Bits | | | | TLV5610IYE | | | 0 to 4095 | | ±2 | ±6 | | | INL | Integral nonlinearity | TLV5608IYE | $V_{ref} = 2 V, 4 V$ | Code 2 | 0 to 1023 | | ±0.5 | ±2 | LSB | | D. II | DW | TLV5610IYE | ., ., ., | | 0 to 4095 | | ±0.5 | ±1 | 1.00 | | DNL | Differential nonlinearity | TLV5608IYE | $V_{ref} = 2 V, 4 V$ | Code 2 | 0 to 1023 | | ±0.1 | ±1 | LSB | | DNII | Differential neutineaute. | TLV5610IYE | | Code 40 to 4095 | ±0.5 | ±1 | LCD | |--------------------|---|---------------------|-------------------------------|-----------------|------|------|------------------| | DNL | Differential nonlinearity | TLV5608IYE | V _{ref} = 2 V, 4 V | Code 20 to 1023 | ±0.1 | ±1 | LSB | | EZS | Zero scale error (offset error at ze | ro scale) | | | | ±30 | mV | | E _{ZS} TC | Zero scale error temperature coeff | ficient | | | 30 | | μV/°C | | EG | Gain error | | | | | ±0.6 | %Full
Scale V | | E _G TC | Gain error temperature coefficient | | | | 10 | | ppm/°C | | (1) Power | supply rejection ratio at full scale is | measured by varying | AV _{DD} and is given | by: | | | | $[\]mathsf{PSRR} = 20 \log \left[(\mathsf{E}_{G}(\mathsf{AV}_{DD}\mathsf{max}) - \mathsf{E}_{G}(\mathsf{AV}_{DD}\mathsf{min})) / \mathsf{V}_{DD}\mathsf{max} \right]$ TLV5610IYE # **ELECTRICAL CHARACTERISTICS (CONTINUED)** over operating free-air temperature range unless otherwise noted(1) | OUTP | UT SPECIFICATIONS | | | | | _ | |------|---------------------------------|--|-----|-----|-----------------------|------------------| | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | | VO | Voltage output range | $R_L = 10 \text{ k}\Omega$ | 0 | | AV _{DD} -0.4 | V | | | Output load regulation accuracy | $R_L = 2 \text{ k}\Omega \text{ vs } 10 \text{ k}\Omega$ | | | ±0.3 | %Full
Scale V | | REFE | RENCE INPUT | | | | | | | |----------------|-------------------------------|--|------|-----|-----|-----------|------| | | PARAMETER | TEST CONDITIONS | | MIN | TYP | MAX | UNIT | | ٧ı | Input voltage range | | | 0 | | AV_{DD} | V | | R _I | Input resistance | | | | | | kΩ | | Ci | Input capacitance | | | | 5 | | рF | | | Defence a Secret based of the | V 0.4V - 0.040 V/s - larget scale - 0.000 | Fast | | 2.2 | | MHz | | | Reference input bandwidth | $V_{ref} = 0.4 V_{pp} + 2.048 Vdc$, Input code = 0x800 | Slow | | 1.9 | | MHz | | | Reference feedthrough | V _{ref} = 2 V _{pp} at 1 kHz + 2.048 Vdc (see Note 1) | | | -84 | | dB | ⁽¹⁾ Reference feedthrough is measured at the DAC output with an input code = 0x000. | DIGITA | L INPUTS | | | | | | | |--------|----------------------------------|---|----------------------|-----|-----|-----|------| | | PARAMETE | R | TEST CONDITIONS | MIN | TYP | MAX | UNIT | | lн | High-level digital input current | | $V_I = DV_{DD}$ | | | 1 | μΑ | | IIL | Low-level digital input current | | V _I = 0 V | -1 | | | μΑ | | Ci | Input capacitance | | | | 8 | | рF | | DIGITAL | LOUTPUTS | | | | | | | |---------|-----------------------------------|---|---------------------|-----|-----|-----|------| | | PARAMETE | :R | TEST CONDITIONS | MIN | TYP | MAX | UNIT | | Vон | High-level digital output voltage | $R_L = 10 \text{ k}\Omega$ | | 2.6 | | | V | | VOL | Low-level digital output voltage | R _L = 10 kΩ | | | | 0.4 | V | | | Output voltage rise time | $R_L = 10 \text{ k}\Omega, C_L = 20 \text{ pF}, Include}$ | s propogation delay | | 7 | 20 | ns | | ANALOG OUTPUT DYNAMIC PERFORMANCE | | | | | | | | | | |--|------------------------------------|--|-------------------------------------|------|-----|-----|------|------|--| | | PARAMETER | TI | EST CONDITIONS | | MIN | TYP | MAX | UNIT | | | t _S (FS) Output settling time, full scale | | D 4010 | 0 400 F.O. N. 4 | Fast | | 1 | 3 | | | | | Output settling time, full scale | $R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$, See Note 1 | $C_L = 100 \text{ pF}$, See Note 1 | Slow | | 3 | 7 | μs | | | | | R _L = 10 kΩ, | C _L = 100 pF, See Note 2 | Fast | | 0.5 | 1 | | | | ts(CC) | Output settling time, code to code | | | Slow | | 1 | 2 | μs | | | 0.0 | Cl . | D 4010 | 0 400 F.O. N. A. | Fast | 4 | 10 | | | | | SR | Slew rate | R_L = 10 kΩ, C_L = 100 pF, See Note 3 | Slow | 1 | 3 | | V/μs | | | | | Glitch energy | See Note 4 | | | | 4 | | nV-s | | | | Channel crosstalk | 10 kHz sine, 4 Vpp | | | | -90 | | dB | | ⁽¹⁾Settling time is the time for the output signal to remain within ±0.5 LSB of the final measured value for a digital input code change of 0x80 to 0xFFF and 0xFFF to 0x080 respectively. Assured by design; not tested. ⁽²⁾Settling time is the time for the output signal to remain within ±0.5 LSB of the final measured value for a digital input code change of one count. The max time applies to code changes near zero scale or full scale. Assured by design; not tested. ⁽³⁾Slew rate determines the time it takes for a change of the DAC output from 10% to 90% full scale voltage. ⁽⁴⁾Code transition: TLV5610IYE - 0x7FF to 0x800, TLV5608IYE - 0x7FC to 0x800. TLV5608IYE **TLV5610IYE** # **DIGITAL INPUT TIMING REQUIREMENTS** | | PARAMETER | MIN | TYP | MAX | UNIT | |------------------------|---|--------------|-----|-----|------| | t _{su(FS-CK)} | Setup time, FS low before first negative SCLK edge | 8 | | | ns | | tsu(C16-FS) | Setup time, 16^{th} negative edge after FS low on which bit D0 is sampled before rising edge of FS. μ C mode only | 10 | | | ns | | twL(LDAC) | LDAC duration low | 10 | | | ns | | t _{wH} | SCLK pulse duration high | 16 | | | ns | | t_{WL} | SCLK pulse duration low | 16 | | | | | t _{su(D)} | Setup time, data ready before SCLK falling edge | 8 | | | ns | | t _{h(D)} | Hold time, data held valid after SCLK falling edge | 5 | | | ns | | twH(FS) | FS duration high | 10 | | | ns | | twL(FS) | FS duration low | 10 | | | ns | | t _S | Settling time | See AC specs | | | | # TYPICAL CHARACTERISTICS **OUTPUT LOAD REGULATION** 4.12 $V_{DD} = 5 V$ V_{ref} = 4 V, Full Scale 4.11 Fast Vo - Output Voltage - V 4.1 Slow 4.09 4.08 4.07 4.06 4.05 4.04 -0.5 -1.5 -2 -2.5 -3.5 0 Figure 3 Figure 4 Sourcing Current - mA TLV5610IYE TLV5608IYE # TLV5610IYE **INTEGRAL NONLINEARITY** ٧S Figure 5 ### TLV5610IYE **DIFFERENTIAL NONLINEARITY** Figure 6 # TLV5608IYE INTEGRAL NONLINEARITY # Figure 7 # TLV5608IYE DIFFERENTIAL NONLINEARITY vs CODE Figure 8 TLV5608IYE # PARAMETER MEASUREMENT INFORMATION Figure 9. Serial Interface Timing Figure 10. Output Timing #### **APPLICATION INFORMATION** #### **GENERAL FUNCTION** The TLV5610IYE and TLV5608IYE are 8-channel, 12-bit, single supply DACs, based on a resistor string architecture. They consist of a serial interface, a speed and power-down control logic, a reference input buffer, a resistor string, and a rail-to-rail output buffer. The output voltage (full scale determined by external reference) for each channel is given by: REF $$\frac{\text{CODE}}{0 \times 1000}$$ [V] where REF is the reference voltage and CODE is the digital input value. The input range is 0x000 to 0xFFF for the TLV5610IYE and, 0x000 to 0xFFC for the TLV5608IYE. A power on reset initially puts the internal latches to a defined state (all bits zero). #### **SERIAL INTERFACE** A falling edge of FS starts shifting the data on DIN starting with the MSB to the internal register on the falling edges of SCLK. After 16 bits have been transferred, the content of the shift register is moved to one of the DAC holding registers depending on the address bits within the data word. A logic 0 on the LDAC pin is required to transfer the content of the DAC holding register to the DAC latch and to update the DAC outputs. LDAC is an asynchronous input. It can be held low if a simultaneous update of all eight channels is not needed. For daisy-chaining, DOUT provides the data sampled on DIN with a delay of 16 clock cycles. Difference between DSP mode (MODE = N.C. or 0) and μC (MODE = 1) mode: - In μC mode FS needs to be held low until all 16 data bits have been transferred. If FS is driven high before the 16th falling clock edge the data transfer is cancelled. The DAC is updated after a rising edge on FS. - In DSP mode FS only needs to stay low for 20 ns and can go high before the 16th falling clock edge. # SERIAL CLOCK FREQUENCY AND UPDATE RATE The maximum serial clock frequency is given by: $$f_{\text{sclkmax}} = \frac{1}{t_{\text{whmin}} + t_{\text{wlmin}}} = 30 \text{ MHz}$$ The maximum update rate is: $$f_{updatemax} = \frac{1}{16 (t_{whmin} + t_{wlmin})} = 1.95 \text{ MHz}$$ Note, that the maximum update rate is just a theoretical value for the serial interface, as the settling time of the DAC has to be considered also. # **DATA FORMAT** The 16 bit data word consists of two parts: • Address bits (D15...D12) Data bits (D11...D0) | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | |-----|-----|-----|-----|-----|-----|----|----|----|----|-----|----|----|----|----|----| | А3 | A2 | A1 | A0 | | | | | | Da | ata | | | | | | Ax: Address bits. See table. #### **REGISTER MAP** | А3 | A2 | A1 | A0 | FUNCTION | |----|----|----|----|-------------| | 0 | 0 | 0 | 0 | DAC A | | 0 | 0 | 0 | 1 | DAC B | | 0 | 0 | 1 | 0 | DAC C | | 0 | 0 | 1 | 1 | DAC D | | 0 | 1 | 0 | 0 | DAC E | | 0 | 1 | 0 | 1 | DAC F | | 0 | 1 | 1 | 0 | DAC G | | 0 | 1 | 1 | 1 | DAC H | | 1 | 0 | 0 | 0 | CTRL0 | | 1 | 0 | 0 | 1 | CTRL1 | | 1 | 0 | 1 | 0 | Preset | | 1 | 0 | 1 | 1 | Reserved | | 1 | 1 | 0 | 0 | DAC A and B | | 1 | 1 | 0 | 1 | DAC C and D | | 1 | 1 | 1 | 0 | DAC E and F | | 1 | 1 | 1 | 1 | DAC G and H | #### DAC A-H AND TWO-CHANNEL REGISTERS Writing to DAC A-H sets the output voltage of channel A-H. It is possible to automatically generate the complement of one channel by writing to one of the four two-channel registers (DAC A and \overline{B} etc.). The TLV5610IYE decodes all 12 data bits. The TLV5608IYE decodes D11 to D2 (D1 and D0 are ignored). #### **PRESET** The outputs of all DAC channels can be driven to a predefined value stored in the preset register by driving the PRE input low. The PRE input is asynchronous to the clock. #### CTRL0 | | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | |---|-----|-----|----|----|----|----|----|----|----|----|----|----| | ſ | Χ | Х | Х | Х | Х | Х | Х | PD | DO | Х | Х | IM | PD : Full device power down 0 = normal 1 = power down DO : Digital output enable 0 = disable 1 = enable IM : Input mode 0 = straight binary 1 = twos complement X : Reserved If DOUT is enabled, the data input on DIN is output on DOUT with a 16 cycle delay. That makes it possible to daisy-chain multiple DACs on one serial bus. #### CTRL1 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | |-----|-----|----|----|-----|-----|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------| | Х | X | Х | Х | PGH | PEF | P _{CD} | P _{AB} | S _{GH} | S _{EF} | S _{CD} | S _{AB} | P_{XY} : Power Down DAC_{XY} 0 = normal 1 = power down S_{XY} : Speed DAC_{XY} 0 = slow 1 = fast XY : DAC pair AB, CD, EF or GH In power-down mode, the amplifiers of the selected DAC pair within the device are disabled and the total power consumption of the device is significantly reduced. Power-down mode of a specific DAC pair can be selected by setting the PXY bit within the data word to 1. There are two settling time modes: fast and slow. Fast mode of a DAC pair is selected by setting S_{XY} to 1 and slow mode is selected by setting S_{XY} to 0. # USING TLV5610IYE AND TLV5608IYE, WAFER CHIP SCALE PACKAGE (WCS) - TLV5610 and TLV5608 qualifications were done using a wire-bonded small outline (SOIC) package and includes: steady state life, thermal shock, ESD, latch-up, biased HAST, autoclave, and characterization. These qualified devices are orderable as TLV5610IDW and TLV5608IDW. - The wafer chip-scale package (WCS), TLV5610IYE and TLV5608IYE, uses the same DIE as TLV5610IDW and TLV5608IDW respectively, but are not qualified. WCS qualification, including board level reliability (BLR), is the responsibility of the customer. - It is recommended that underfill be used for increased reliability. BLR is application dependent, but may include test such as: temperature cycling, drop test, key push, bend, vibration, and package shear. The following WCSP information provides the user of the TLV5610IYE and TLV5608IYE with some general guidelines for board assembly. - Melting point of eutectic solder is 183°C. - Recommended peak reflow temperatures are in the 220°C to 230°C range. - The use of underfill is required. The use of underfill greatly reduces the risk of thermal mismatch fails. Underfill is an epoxy/adhesive that may be added during the board assembly process to improve board level/system level reliability. The process is to dispense the epoxy under the dice after die attach reflow. The epoxy adheres to the body of the device and to the printed-circuit board. It reduces stress placed upon the solder joints due to the thermal coefficient of expansion (TCE) mismatch between the board and the component. Underfill material is highly filled with silica or other fillers to increase an epoxy's modulus, reduce creep sensitivity, and decrease the material's TCE. The recommendation for peak flow temperatures of 220°C to 230°C is based on general empirical results that indicate that this temperature range is needed to facilitate good wetting of the solder bump to the substrate or circuit board pad. Lower peak temperatures may cause nonwets (cold solder joints). NOTES:A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. Figure 11. TLV5610IYE and TLV5608IYE Wafer Chip Scale Package #### **IMPORTANT NOTICE** Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: | Products | | Applications | | |------------------|------------------------|--------------------|---------------------------| | Amplifiers | amplifier.ti.com | Audio | www.ti.com/audio | | Data Converters | dataconverter.ti.com | Automotive | www.ti.com/automotive | | DSP | dsp.ti.com | Broadband | www.ti.com/broadband | | Interface | interface.ti.com | Digital Control | www.ti.com/digitalcontrol | | Logic | logic.ti.com | Military | www.ti.com/military | | Power Mgmt | power.ti.com | Optical Networking | www.ti.com/opticalnetwork | | Microcontrollers | microcontroller.ti.com | Security | www.ti.com/security | | | | Telephony | www.ti.com/telephony | | | | Video & Imaging | www.ti.com/video | | | | Wireless | www.ti.com/wireless | Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright © 2003, Texas Instruments Incorporated