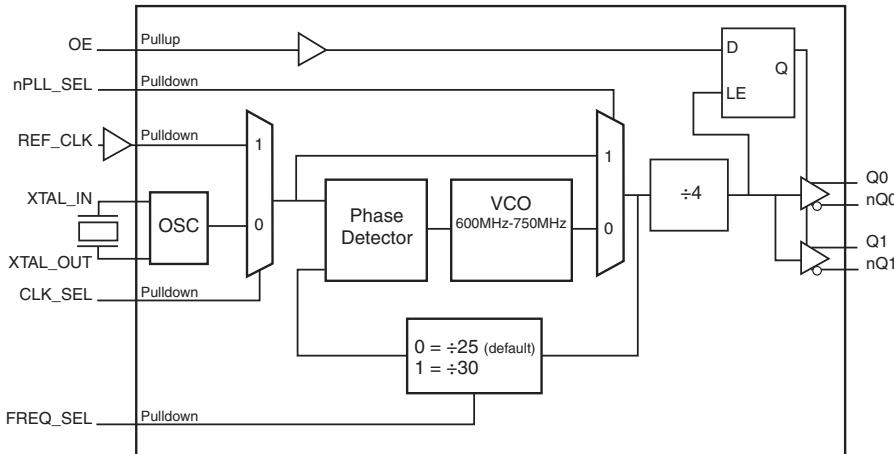


General Description

The ICS843252-04 is a 10Gb/12Gb Ethernet Clock Generator. The ICS843252-04 can synthesize 10 Gigabit Ethernet and 12 Gigabit Ethernet with a 25MHz crystal. It can also generate SATA and 10Gb Fibre Channel reference clock frequencies with the appropriate choice of crystals. The ICS843252-04 has excellent phase jitter performance and is packaged in a small 16-pin TSSOP, making it ideal for use in systems with limited board space.


Configuration Table with 25MHz Crystal

Inputs				Output Frequency (MHz)	Application
Crystal Frequency (MHz)	Feedback Divide	VCO Frequency (MHz)	N Output Divide		
25	30	750	4	187.5	12 Gigabit Ethernet
25	25	625	4	156.25	10 Gigabit Ethernet

Configuration Table with Selectable Crystals

Inputs				Output Frequency (MHz)	Application
Crystal Frequency (MHz)	Feedback Divide	VCO Frequency (MHz)	N Output Divide		
20	30	600	4	150	SATA
21.25	30	637.5	4	159.375	10 Gigabit Ethernet
24	25	600	4	150	SATA
25.5	25	637.5	4	159.375	10 Gigabit Ethernet
30	25	750	4	187.5	12 Gigabit Ethernet

Block Diagram

Pin Assignment

nQ1	1	16	XTAL_IN
Q1	2	15	XTAL_OUT
Vcc0	3	14	VEE
OE	4	13	REF_CLK
nPLL_SEL	5	12	CLK_SEL
Vcc0	6	11	Vcc
Q0	7	10	VCCA
nQ0	8	9	FREQ_SEL

ICS843252-04
16-Lead TSSOP
4.4mm x 5.0mm x 0.925mm
package body
G Package
Top View

Pin Description and Pin Characteristic Tables

Table 1. Pin Descriptions

Number	Name	Type		Description
1, 2	nQ1, Q1	Output		Differential clock output pair. LVPECL interface levels.
3, 6	V _{CCO}	Power		Output supply pins.
4	OE	Input	Pullup	Output enable. When HIGH, clock outputs follow clock input. When LOW, Q _x outputs are forced low, nQ _x outputs are forced high. LVCMS/LVTTL interface levels.
5	nPLL_SEL	Input	Pulldown	PLL select pin. When LOW, selects the PLL. When HIGH, bypasses the PLL. LVCMS/LVTTL interface levels.
7, 8	Q0, nQ0	Output		Differential clock output pair. LVPECL interface levels.
9	FREQ_SEL	Input	Pulldown	Frequency select pin. LVCMS/LVTTL interface levels.
10	V _{CCA}	Power		Analog supply pin.
11	V _{CC}	Power		Power supply pin.
12	CLK_SEL	Input	Pulldown	Clock select input. When LOW, selects the crystal inputs. When HIGH, selects REF_CLK. LVCMS/LVTTL interface levels.
13	REF_CLK	Input	Pulldown	Single-ended reference clock input. LVCMS/LVTTL interface levels.
14	V _{EE}	Power		Negative supply pin.
15, 16	XTAL_OUT XTAL_IN	Input		Crystal oscillator interface XTAL_IN is the input, XTAL_OUT is the output.

NOTE: *Pullup* and *Pulldown* refer to internal input resistors. See Table 2, *Pin Characteristics*, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance		REF_CLK		4		pF
R _{PULLUP}	Input Pullup Resistor				51		kΩ
R _{PULLDOWN}	Input Pulldown Resistor				51		kΩ

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V_{CC}	4.6V
Inputs, V_I , XTAL_IN Other Inputs	0V to V_{CC} -0.5V to $V_{CC} + 0.5V$
Outputs, I_O Continuos Current Surge Current	50mA 100mA
Package Thermal Impedance, θ_{JA}	81.2°C/W (0 mps)
Storage Temperature, T_{STG}	-65°C to 150°C

DC Electrical Characteristics

Table 3A. Power Supply DC Characteristics, $V_{CC} = V_{CCO} = 3.3V \pm 5\%$, $V_{EE} = 0V$; $T_A = 0^\circ C$ to $70^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{CC}	Power Supply Voltage		3.135	3.3	3.465	V
V_{CCA}	Analog Supply Voltage		$V_{CC} - 0.16$	3.3	V_{CC}	V
V_{CCO}	Power Supply Voltage		3.135	3.3	3.465	V
I_{CC}	Power Supply Current				76	mA
I_{CCA}	Analog Supply Current				16	mA
I_{EE}	Power Supply Current				113	mA

Table 3B. LVC MOS/LV TTL DC Characteristics, $V_{CC} = V_{CCO} = 3.3V \pm 5\%$, $V_{EE} = 0V$; $T_A = 0^\circ C$ to $70^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{IH}	Input High Voltage		2		$V_{CC} + 0.3$	V
V_{IL}	Input Low Voltage		-0.3		0.8	V
I_{IH}	Input High Current REF_CLK, CLK_SEL, nPLL_SEL, FREQ_SEL	$V_{CC} = V_{IN} = 3.465V$			150	μA
		OE	$V_{CC} = V_{IN} = 3.465V$		5	μA
I_{IL}	Input Low Current REF_CLK, CLK_SEL, nPLL_SEL, FREQ_SEL	$V_{CC} = 3.465V, V_{IN} = 0V$	-5			μA
		OE	$V_{CC} = 3.465V, V_{IN} = 0V$	-150		μA

Table 3C. LVPECL DC Characteristics, $V_{CC} = V_{CCO} = 3.3V \pm 5\%$, $V_{EE} = 0V$; $T_A = 0^\circ C$ to $70^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{OH}	Output High Voltage; NOTE 1		$V_{CCO} - 1.4$		$V_{CCO} - 0.9$	V
V_{OL}	Output Low Voltage; NOTE 1		$V_{CCO} - 2.0$		$V_{CCO} - 1.7$	V
V_{SWING}	Peak-to-Peak Output Voltage Swing		0.55		1.0	V

NOTE 1: Output termination with 50Ω to $V_{CCO} - 2V$.

Table 4. Crystal Characteristics

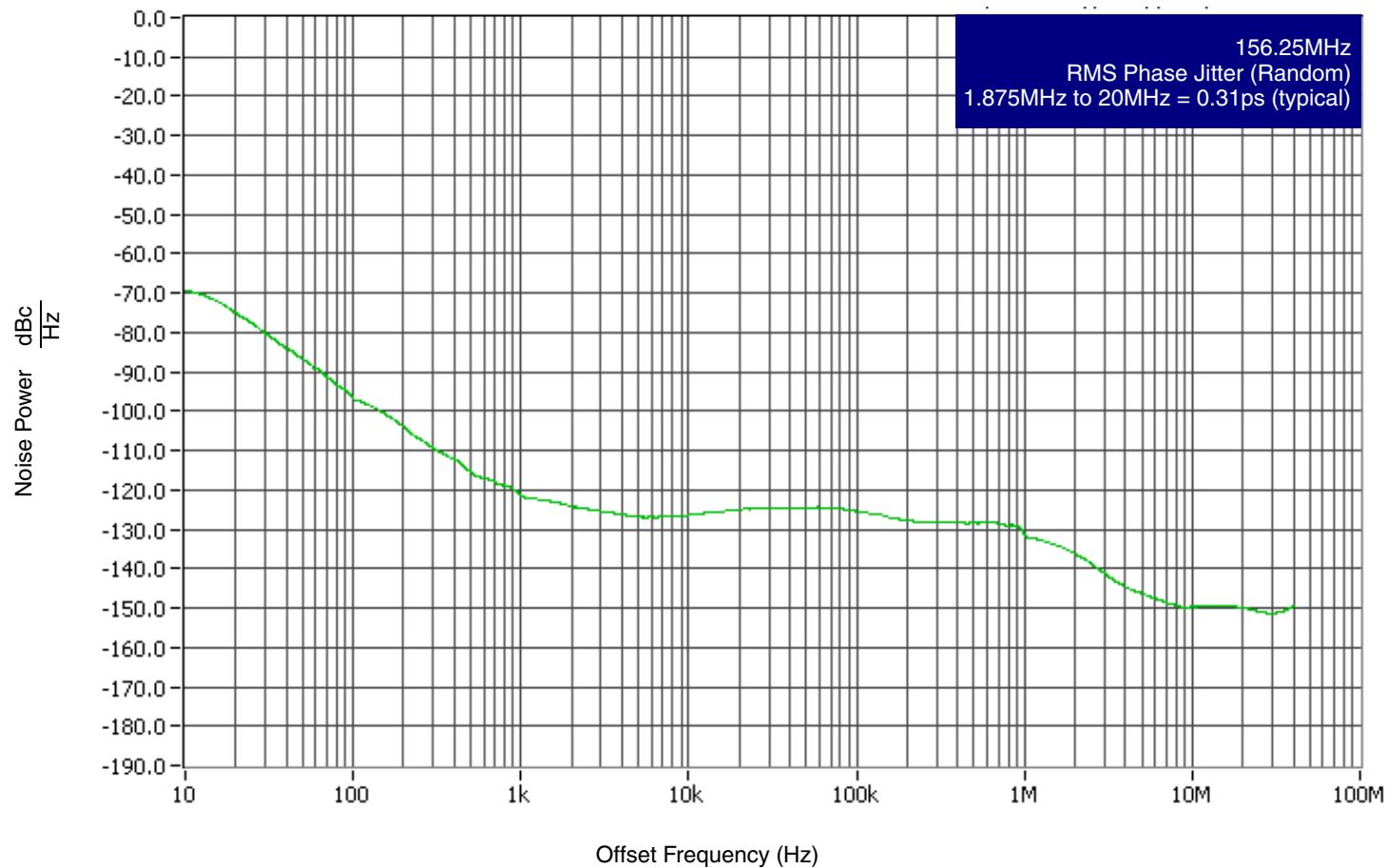
Parameter	Test Conditions	Minimum	Typical	Maximum	Units
Mode of Oscillation		Fundamental			
Frequency		20		30	MHz
Equivalent Series Resistance (ESR)				50	Ω
Shunt Capacitance				7	pF
Capacitive Loading (C_L)			12	18	pF

AC Electrical Characteristics

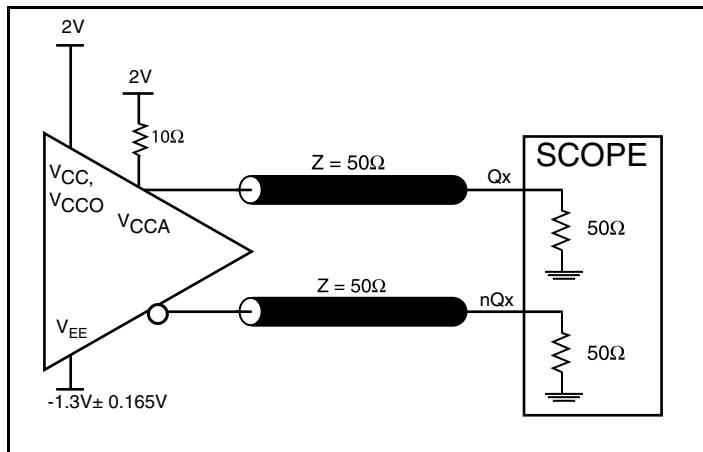
Table 5. AC Characteristics, $V_{CC} = V_{CCO} = 3.3V \pm 5\%$, $V_{EE} = 0V$; $T_A = 0^\circ C$ to $70^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f_{OUT}	Output Frequency		150		187.5	MHz
$\text{f}_{\text{jit}}(\emptyset)$	RMS Phase Jitter (Random); NOTE 1	156.25MHz, Integration Range: 1.875MHz – 20MHz		0.31	0.40	ps
		159.375MHz, Integration Range: 1.875MHz – 20MHz		0.31	0.35	ps
		187.5MHz, Integration Range: 1.875MHz – 20MHz		0.33	0.40	ps
$t_{sk(o)}$	Output skew; NOTE 2, 3			5	15	ps
t_R / t_F	Output Rise/Fall Time	20% to 80%	300		600	ps
odc	Output Duty Cycle	$nPLL_SEL = 0$	48		52	%

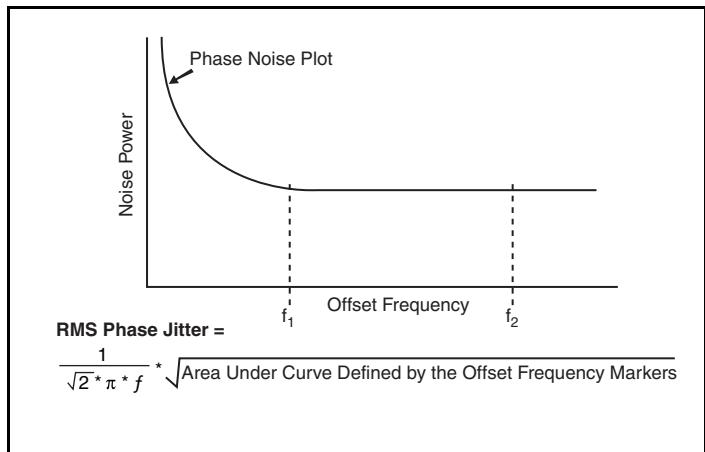
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when device is mounted in a test socket with maintained transverse airflow greater than 500 lpm. Device will meet specifications after thermal equilibrium has been reached under these conditions.

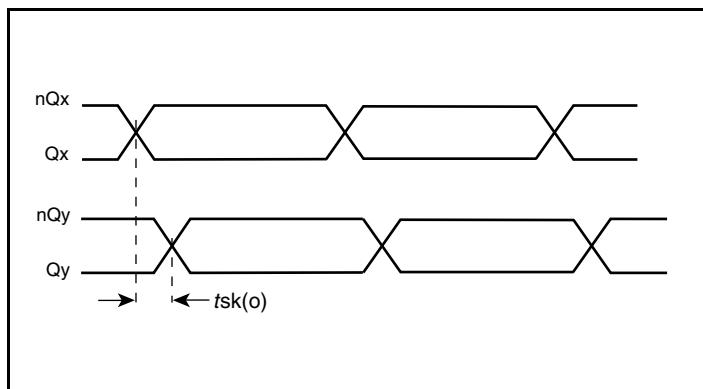

NOTE: Characterized using crystal with $C_L = 18\text{pF}$.

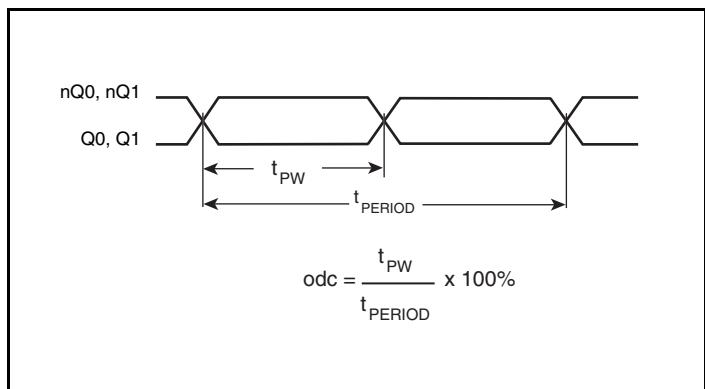
NOTE 1: Please refer to the Phase Noise plots.

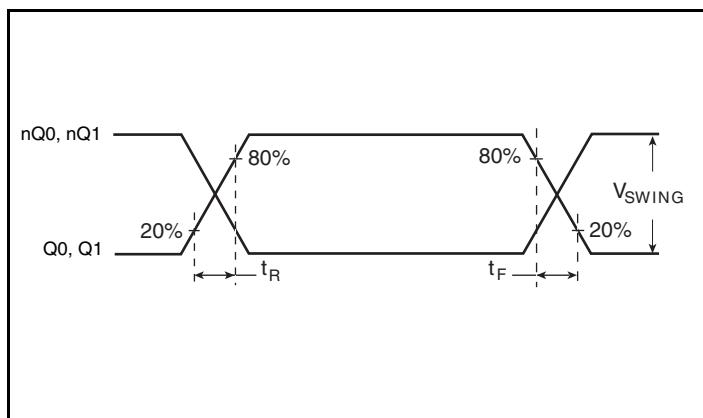

NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the differential crosspoint.

NOTE 3: These parameters are guaranteed by characterization. Not tested in production.


Typical Phase Noise at 156.25MHz

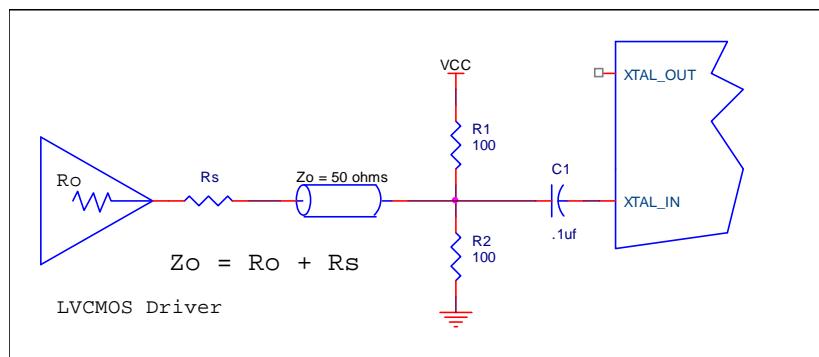

Parameter Measurement Information


3.3V LVPECL Output Load Test Circuit

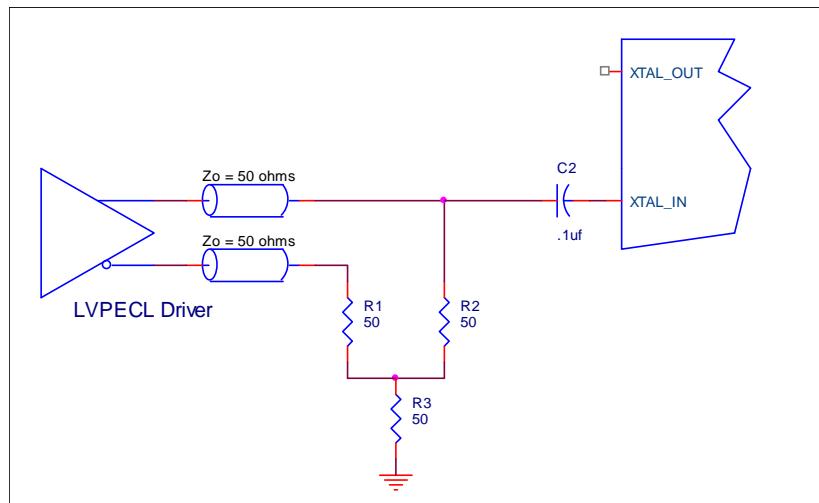

RMS Phase Jitter

Output Skew

LVPECL Output Duty Cycle/Pulse Width/Period


Output Rise/Fall Time

Applications Information


Overdriving the XTAL Interface

The XTAL_IN input can be overdriven by an LVC MOS driver or by one side of a differential driver through an AC coupling capacitor. The XTAL_OUT pin can be left floating. The amplitude of the input signal should be between 500mV and 1.8V and the slew rate should not be less than 0.2V/nS. For 3.3V LVC MOS inputs, the amplitude must be reduced from full swing to at least half the swing in order to prevent signal interference with the power rail and to reduce internal noise. *Figure 1A* shows an example of the interface diagram for a high speed 3.3V LVC MOS driver. This configuration requires that the sum of the output impedance of the driver (Z_o) and the series resistance (R_s) equals the transmission line impedance. In addition, matched termination at the crystal input will attenuate the signal in half. This

can be done in one of two ways. First, R_1 and R_2 in parallel should equal the transmission line impedance. For most 50Ω applications, R_1 and R_2 can be 100Ω . This can also be accomplished by removing R_1 and changing R_2 to 50Ω . The values of the resistors can be increased to reduce the loading for a slower and weaker LVC MOS driver. *Figure 1B* shows an example of the interface diagram for an LVPECL driver. This is a standard LVPECL termination with one side of the driver feeding the XTAL_IN input. It is recommended that all components in the schematics be placed in the layout. Though some components might not be used, they can be utilized for debugging purposes. The datasheet specifications are characterized and guaranteed by using a quartz crystal as the input.

Figure 1A. General Diagram for LVC MOS Driver to XTAL Input Interface

Figure 1B. General Diagram for LVPECL Driver to XTAL Input Interface

Recommendations for Unused Input Pins

Inputs:

Crystal Inputs

For applications not requiring the use of the crystal oscillator input, both XTAL_IN and XTAL_OUT can be left floating. Though not required, but for additional protection, a $1\text{k}\Omega$ resistor can be tied from XTAL_IN to ground.

REF_CLK Input

For applications not requiring the use of the reference clock, it can be left floating. Though not required, but for additional protection, a $1\text{k}\Omega$ resistor can be tied from the REF_CLK to ground.

LVCMS Control Pins

All control pins have internal pullup and pulldown resistors; additional resistance is not required but can be added for additional protection. A $1\text{k}\Omega$ resistor can be used.

Outputs:

LVPECL Outputs

All unused LVPECL output pairs can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated.

Termination for 3.3V LVPECL Outputs

The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines.

The differential outputs are a low impedance follower output that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50Ω

transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. Figures 2A and 2B show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations.

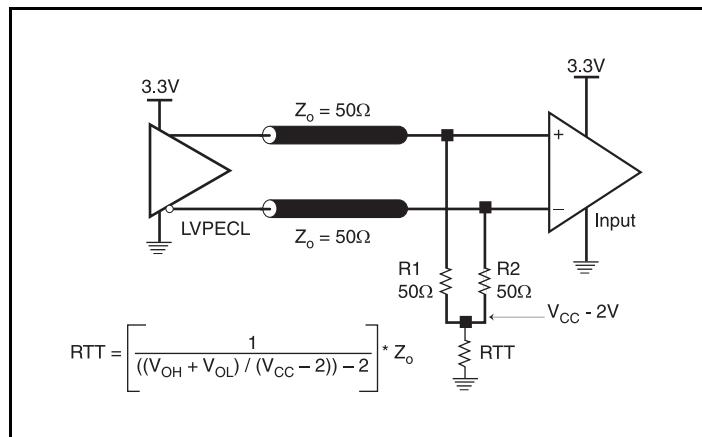


Figure 2A. 3.3V LVPECL Output Termination

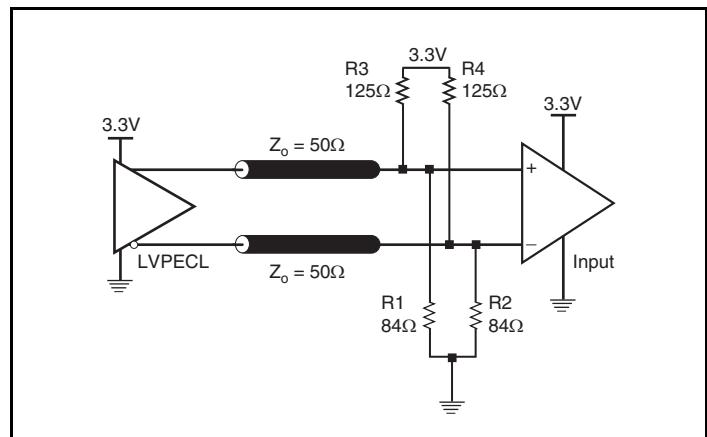


Figure 2B. 3.3V LVPECL Output Termination

Schematic Example

Figure 3 (next page) shows an example of ICS843252-04 application schematic. The schematic example focuses on functional connections and is not configuration specific. Refer to the pin description and functional tables in the datasheet to ensure the logic control inputs are properly set.

In this example, the device is operated $V_{CC} = V_{CCA} = V_{CCO} = 3.3V$. The 12pF parallel resonant 25MHz crystal is used. The load capacitance $C1 = C2 = 10pF$ are recommended for frequency accuracy. Depending on the parasitic of the printed circuit board layout, these values might require a slight adjustment to optimize the frequency accuracy. For this device, the crystal load capacitors are required for proper operation. Crystals with other load capacitance specifications can be used, but will require different values for $C1$ and $C2$.

Two LVPECL terminations are shown for the outputs, one is a standard DC termination and the other is an example of an AC termination, typically used when connecting a 3.3V LVPECL driver to a receiver operating at a lower supply voltage. For alternative terminations see the IDT application note "Termination – LVPECL".

As with any high speed analog circuitry, the power supply pins are vulnerable to random noise. To achieve optimum jitter performance, power supply isolation is required. The ICS843252-04 provides separate power supplies to isolate any high switching noise from coupling into the internal PLL.

In order to achieve the best possible filtering, it is recommended that the placement of the filter components be on the device side of the PCB as close to the power pins as possible. If space is limited, the 0.1uF capacitor in each power pin filter should be placed on the device side. The other components can be on the opposite side of the PCB. Power supply filter recommendations are a general guideline to be used for reducing external noise from coupling into the devices. The filter performance is designed for wide range of noise frequency. This low-pass filter starts to attenuate noise at approximately 10kHz. If a specific frequency noise component with high amplitude interference is known, such as switching power supplies frequencies, it is recommended that component values be adjusted and if required, additional filtering be added. Additionally general design practice for power plane voltage stability suggests adding bulk capacitances in the general area of all devices.

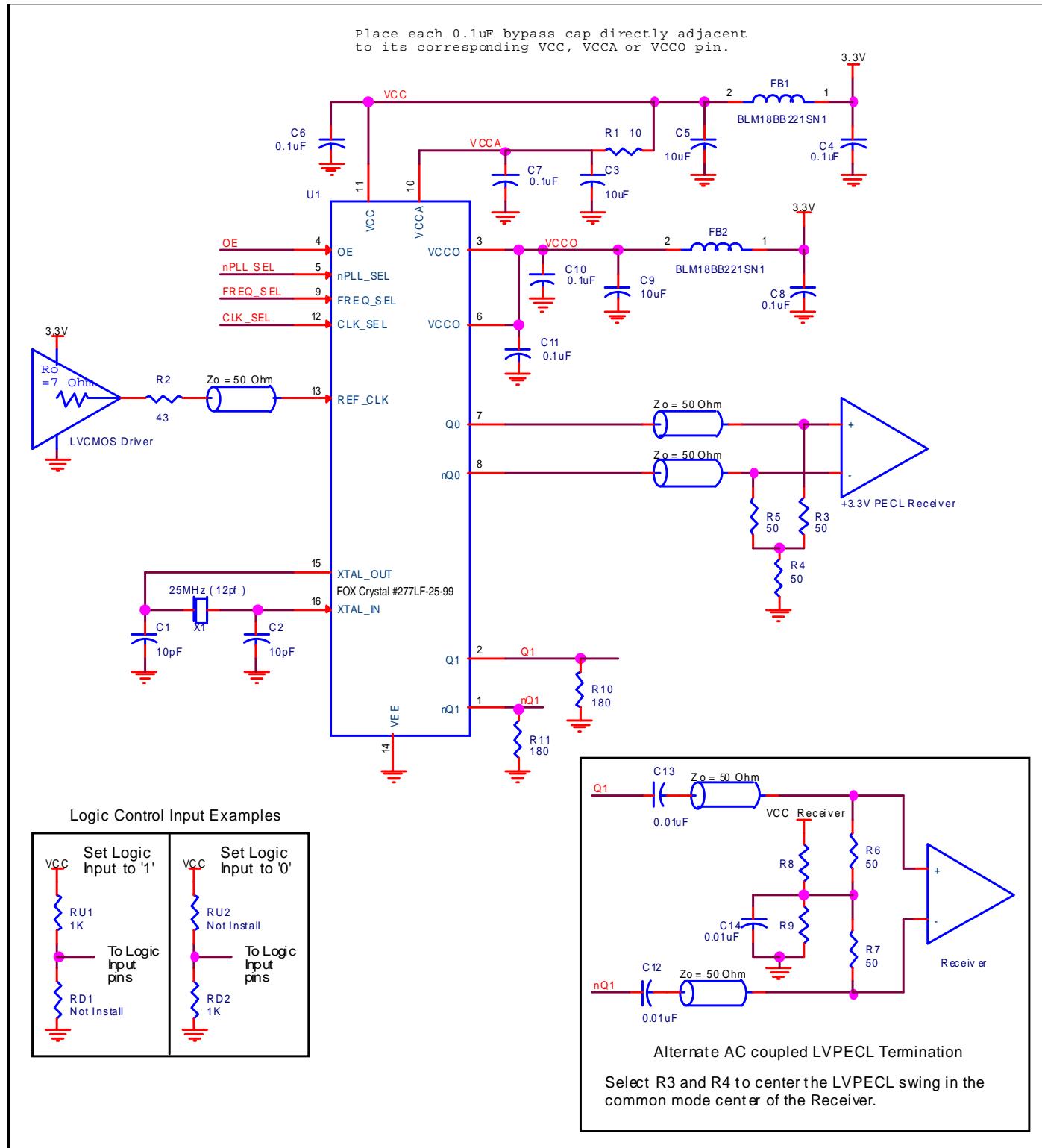


Figure 3. ICS843252-04 Schematic Layout

Power Considerations

This section provides information on power dissipation and junction temperature for the ICS843252-04. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the ICS843252-04 is the sum of the core power plus the power dissipated due to loading. The following is the power dissipation for $V_{CC} = 3.3V + 5\% = 3.465V$, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated due to loading.

- Power (core)_{MAX} = $V_{CC_MAX} * I_{EE_MAX} = 3.465V * 113mA = 391.5mW$

Power (outputs)_{MAX} = **30mW/Loaded Output pair**

If all outputs are loaded, the total power is $2 * 30mW = 60mW$

Total Power_{MAX} (3.465V, with all outputs switching) = $391.5mW + 60mW = 451.5mW$

2. Junction Temperature.

Junction temperature, T_j , is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, T_j , to 125°C ensures that the bond wire and bond pad temperature remains below 125°C.

The equation for T_j is as follows: $T_j = \theta_{JA} * P_{d_total} + T_A$

T_j = Junction Temperature

θ_{JA} = Junction-to-Ambient Thermal Resistance

P_{d_total} = Total Device Power Dissipation (example calculation is in section 1 above)

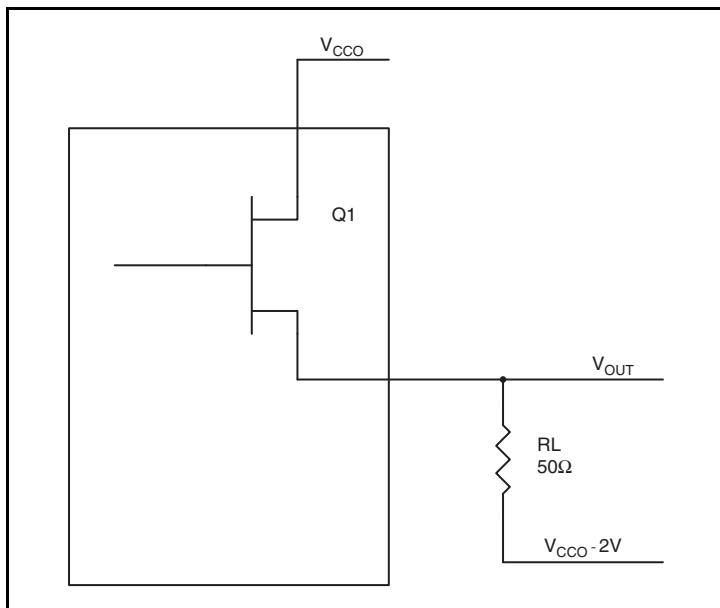
T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 81.2°C/W per Table 6 below.

Therefore, T_j for an ambient temperature of 70°C with all outputs switching is:

$70^\circ C + 0.452W * 81.2^\circ C/W = 106.7^\circ C$. This is below the limit of 125°C.

This calculation is only an example. T_j will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).


Table 6. Thermal Resistance θ_{JA} for 16 Lead TSSOP, Forced Convection

θ_{JA} by Velocity			
Meters per Second	0	1	2.5
Multi-Layer PCB, JEDEC Standard Test Boards	81.2°C/W	73.9°C/W	70.2°C/W

3. Calculations and Equations.

The purpose of this section is to derive the power dissipated into the load.

LVPECL output driver circuit and termination are shown in *Figure 4*.

Figure 4. LVPECL Driver Circuit and Termination

To calculate power dissipation due to loading, use the following equations which assume a 50Ω load, and a termination voltage of $V_{CCO} - 2V$.

- For logic high, $V_{OUT} = V_{OH_MAX} = V_{CCO_MAX} - 0.9V$
 $(V_{CCO_MAX} - V_{OH_MAX}) = 0.9V$
- For logic low, $V_{OUT} = V_{OL_MAX} = V_{CCO_MAX} - 1.7V$
 $(V_{CCO_MAX} - V_{OL_MAX}) = 1.7V$

Pd_H is power dissipation when the output drives high.

Pd_L is the power dissipation when the output drives low.

$$Pd_H = [(V_{OH_MAX} - (V_{CCO_MAX} - 2V))/R_L] * (V_{CCO_MAX} - V_{OH_MAX}) = [(2V - (V_{CCO_MAX} - V_{OH_MAX}))/R_L] * (V_{CCO_MAX} - V_{OH_MAX}) = [(2V - 0.9V)/50\Omega] * 0.9V = 19.8mW$$

$$Pd_L = [(V_{OL_MAX} - (V_{CCO_MAX} - 2V))/R_L] * (V_{CCO_MAX} - V_{OL_MAX}) = [(2V - (V_{CCO_MAX} - V_{OL_MAX}))/R_L] * (V_{CCO_MAX} - V_{OL_MAX}) = [(2V - 1.7V)/50\Omega] * 1.7V = 10.2mW$$

Total Power Dissipation per output pair = $Pd_H + Pd_L = 30mW$

Reliability Information

Table 7. θ_{JA} vs. Air Flow Table for a 16 Lead TSSOP

θ_{JA} vs. Air Flow			
Meters per Second	0	1	2.5
Multi-Layer PCB, JEDEC Standard Test Boards	81.2°C/W	73.9°C/W	70.2°C/W

Transistor Count

The transistor count for ICS843252-04 is: 2210

Package Outline and Package Dimensions

Package Outline - G Suffix for 16-Lead TSSOP

Table 8. Package Dimensions for 16 Lead TSSOP

All Dimensions in Millimeters		
Symbol	Minimum	Maximum
N	16	
A		1.20
A1	0.05	0.15
A2	0.80	1.05
b	0.19	0.30
c	0.09	0.20
D	4.90	5.10
E	6.40 Basic	
E1	4.30	4.50
e	0.65 Basic	
L	0.45	0.75
α	0°	8°
aaa		0.10

Reference Document: JEDEC Publication 95, MO-153

Ordering Information

Table 9. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
843252AG-04LF	3252A04L	“Lead-Free” Lead-Free, 16 Lead TSSOP	Tube	0°C to 70°C
843252AG-04LFT	3252A04L	“Lead-Free” Lead-Free, 16 Lead TSSOP	Tape & Reel	0°C to 70°C

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.