CY74FCT163373 SCCS053 - March 1997 - Revised March 2000 # 16-Bit Latch ### **Features** - Low power, pin-compatible replacement for LCX and LPT families - 5V tolerant inputs and outputs - 24 mA balanced drive outputs - Power-off disable outputs permits live insertion - Edge-rate control circuitry for reduced noise - FCT-C speed at 4.2 ns - Latch-up performance exceeds JEDEC standard no. 17 - Typical output skew < 250 ps - Industrial temperature range of -40°C to +85°C - TSSOP (19.6-mil pitch) or SSOP (25-mil pitch) - Typical V_{olp} (ground bounce) performance exceeds Mil Std 883D - V_{CC} = 2.7V to 3.6V - ESD (HBM) > 2000V ### **Functional Description** This device is a 16-bit, D-type latch, designed for use in bus applications requiring high speed and low power. It can either be used as two independent 8-bit latches, or as a single 16-bit latch by connecting the Output Enable (\overline{OE}) and Latch (LE) inputs. The outputs are 24-mA balanced output drivers with current limiting resistors to reduce the need for external terminating resistors and provide for minimal undershoot and reduced ground bounce. Flow-through pinout and small shrink packaging aid in simplifying board layout. The CY74FCT163373 is designed with inputs and outputs capable of being driven by 5.0V buses, allowing its use in mixed voltage systems as a translator. The outputs are also designed with a power off disable feature enabling its use in applications requiring live insertion. # **Pin Description** | Name | Description | |------|-----------------------------------| | D | Data Inputs | | LE | Latch Enable Inputs (Active HIGH) | | ŌĒ | Output Enable Inputs (Active LOW) | | 0 | Three-State Outputs | ### Function Table^[1] | | Outputs | | | |---|---------|----|-------| | D | LE | ŌĒ | 0 | | Н | Н | L | Н | | L | Н | L | L | | Х | L | L | Q_0 | | Х | Х | Н | Z | # Maximum Ratings^[2, 3] | (Above which the useful life may be impaired. For user guidelines, not tested.) | |---| | Storage Temperature –55°C to +125°C | | Ambient Temperature with Power Applied55°C to +125°C | | Supply Voltage Range 0.5V to +4.6V | | DC Input Voltage0.5V to +7.0V | | DC Output Voltage0.5V to +7.0V | | DC Output Current (Maximum Sink Current/Pin)60 to +120 mA | | Power Dissipation | # **Operating Range** | Range | Ambient
Temperature | V _{CC} | |------------|------------------------|-----------------| | Industrial | –40°C to +85°C | 2.7V to 3.6V | # Electrical Characteristics for Non Bus Hold Devices Over the Operating Range V_{CC}=2.7V to 3.6V | Parameter | Description | Test Conditions | s Min. | Typ. ^[4] | Max. | Unit | |------------------|---|---|--------|---------------------|------|------| | V _{IH} | Input HIGH Voltage | All Inputs | 2.0 | | 5.5 | V | | V _{IL} | Input LOW Voltage | | | | 0.8 | V | | V _H | Input Hysteresis ^[5] | | | 100 | | mV | | V _{IK} | Input Clamp Diode Voltage | V _{CC} =Min., I _{IN} =–18 mA | | -0.7 | -1.2 | V | | I _{IH} | Input HIGH Current | V _{CC} =Max., V _I =5.5 | | | ±1 | μΑ | | I _{IL} | Input LOW Current | V _{CC} =Max., V _I =GND | | | ±1 | μΑ | | I _{OZH} | High Impedance Output Current (Three-State Output pins) | V _{CC} =Max., V _{OUT} =5.5V | | | ±1 | μА | | I _{OZL} | High Impedance Output Current (Three-State Output pins) | V _{CC} =Max., V _{OUT} =GND | | | ±1 | μА | | Ios | Short Circuit Current ^[6] | V _{CC} =Max., V _{OUT} =GND | -60 | -135 | -240 | mA | | I _{OFF} | Power-Off Disable | V _{CC} =0V, V _{OUT} ≤4.5V | | | ±100 | μΑ | | I _{CC} | Quiescent Power Supply Current | $V_{IN} \le 0.2V$, $V_{CC} = V_{IN} \ge V_{CC} = 0.2V$ | ⊧Max. | 0.1 | 10 | μА | | Δl _{CC} | Quiescent Power Supply Current (TTL inputs HIGH) | $V_{IN} = V_{CC} - 0.6V^{[7]}$ $V_{CC} =$ | ⊧Max. | 2.0 | 30 | μА | ### Note: - 1. H = HIGH Voltage Level. L = LOW Voltage Level. X = Don't Care. Z = High Impedance. Q₀=Previous state of flip-flop. - Operation beyond the limits set forth may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature With the exception of inputs with bus hold, unused inputs must always be connected to an appropriate logic voltage level, preferably either V_{CC} or ground. Typical values are at V_{CC} =3.3V, T_A = +25°C ambient. - This parameter is specified but not tested. - Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high-speed test apparatus and/or sample and hold techniques are preferable in order to minimize internal chip heating and more accurately reflect operational values. Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parametric tests. In any sequence of parameter tests, I_{OS} tests should be performed last. - 7. Per TTL driven input; all other inputs at V_{CC} or GND. # Electrical Characteristics For Balanced Drive Devices Over the Operating Range V_{CC} =2.7V to 3.6V | Parameter | Description | Test Conditions | Min. | Тур. ^[4] | Max. | Unit | |------------------|--|---|----------------------|---------------------|------|------| | I _{ODL} | Output LOW Dynamic Current ^[6] | V_{CC} =3.3V, V_{IN} = V_{IH} or V_{IL} , V_{OUT} =1.5V | 45 | | 180 | mA | | I _{ODH} | Output HIGH Dynamic Current ^[6] | V_{CC} =3.3V, V_{IN} = V_{IH} or V_{IL} , V_{OUT} =1.5V | -45 | _ | -180 | mA | | V _{OH} | Output HIGH Voltage | V _{CC} =Min., I _{OH} = -0.1 mA | V _{CC} -0.2 | | | V | | | | V _{CC} =Min., I _{OH} = -8 mA | 2.4 ^[8] | 3.0 | | V | | | | V _{CC} =3.0V, I _{OH} = -24 mA | 2.0 | 3.0 | | V | | V_{OL} | Output LOW Voltage | V _{CC} =Min., I _{OL} = 0.1mA | | | 0.2 | V | | | | V _{CC} =Min., I _{OL} = 24 mA | | 0.3 | 0.55 | | ### Note: # $\textbf{Capacitance}^{[5]}(T_{A} = +25^{\circ}C, \, f = 1.0 \; \text{MHz})$ | Parameter | Description | Test Conditions | Typ. ^[4] | Max. | Unit | |------------------|--------------------|-----------------------|---------------------|------|------| | C _{IN} | Input Capacitance | $V_{IN} = 0V$ | 4.5 | 6.0 | pF | | C _{OUT} | Output Capacitance | V _{OUT} = 0V | 5.5 | 8.0 | pF | # **Power Supply Characteristics** | Parameter | Description | Test Condition | Typ. ^[4] | Max. | Unit | | |------------------|--|--|---|------|---------------------|--------| | I _{CCD} | Dynamic Power Supply
Current ^[9] | V _{CC} =Max., One Input Toggling,
50% Duty Cycle,
Outputs Open, OE=GND | V _{IN} =V _{CC} or
V _{IN} =GND | 50 | 75 | μΑ/MHz | | I _C | Total Power Supply
Current ^[10] | V _{CC} =Max., f ₁ =10 MHz, 50% Duty
Cycle, Outputs Open, | V _{IN} =V _{CC} or
V _{IN} =GND | 0.5 | 0.8 | mA | | | | One Bit Toggling, OE=GND | V _{IN} =V _{CC} -0.6V or
V _{IN} =GND | 0.5 | 0.8 | mA | | | | V _{CC} =Max., f ₁ =2.5 MHz, 50% Duty
Cycle, Output Open, Sixteen Bits | V _{IN} =V _{CC} or
V _{IN} =GND | 2.0 | 3.0 ^[11] | mA | | | | Toggling, OE=GND | V _{IN} =V _{CC} -0.6V or
V _{IN} =GND | 2.0 | 3.3 ^[11] | mA | ^{8.} $V_{OH}=V_{CC}-0.6 \text{ V}$ at rated current. # Switching Characteristics Over the Operating Range V_{CC} =3.0V to 3.6V^[12,13] | | | CY74FCT | 163373C | | | |--------------------------------------|----------------------------------|---------|---------|------|--------------------------| | Parameter | Description | Min. | Max. | Unit | Fig. No. ^[14] | | t _{PLH}
t _{PHL} | Propagation Delay D to Q Output | 1.5 | 4.1 | ns | 1, 3 | | t _{PLH}
t _{PHL} | Propagation Delay LE to Q Output | 2.0 | 5.5 | ns | 1, 5 | | t _{PZH} | Output Enable Time | 1.5 | 5.8 | ns | 1, 7, 8 | | t _{PHZ} | Output Disable Time | 1.5 | 5.2 | ns | 1, 7, 8 | | t _{SU} | Input Setup time | 2.0 | - | ns | 1, 4 | | t _H | Input Hold time | 1.5 | - | ns | 1, 4 | | t _{SK(O)} | Output Skew ^[15] | | 0.5 | ns | _ | This parameter is not directly testable, but is derived for use in Total Power Supply calculations. $I_C = I_{QUIESCENT} + I_{INPUTS} + I_{DYNAMIC}$ $I_C = I_{CC} + \Delta I_{CC} D_H N_T + I_{CCD} (f_0/2 + f_1 N_1)$ $I_{CC} = Quiescent Current with CMOS input levels$ $I_{\mathbb{C}}$ A_{ICC} = Quiescent culti-in with CMP3 implict levels A_{ICC} = Power Supply Current for a TTL HIGH input (V_{IN}=3.4V) A_{ICC} = Duty Cycle for TTL inputs HIGH A_{ICC} = Number of TTL inputs at D_{ICC} I_{CCD} = Dynamic Current caused by an input transition pair (HLH or LHL) = Clock frequency for registered devices, otherwise zero = Input signal frequency = Number of inputs changing at f₁ - All currents are in milliamps and all frequencies are in megahertz. Values for these conditions are examples of the I_{CC} formula. These limits are specified but not tested. - Minimum limits are specified but not tested on Propagation Delays. For V_{CC} =2.7, propagation delay, output enable and output disable times should be degraded by 20%. - See "Parameter Measurement Information" in the General Information section. Skew between any two outputs of the same package switching in the same direction. This parameter is ensured by design. ### Ordering Information CY74FCT163373 | Speed (ns) | Ordering Code | Package
Name | Package Type | Operating
Range | |------------|------------------------|-----------------|-------------------------|--------------------| | 4.2 | CY74FCT163373CPACT | Z48 | 48-Lead (240-Mil) TSSOP | Industrial | | | CY74FCT163373CPVC/PVCT | O48 | 48-Lead (300-Mil) SSOP | | # **Package Diagrams** ### 48-Lead Shrunk Small Outline Package O48 DIMENSIONS IN INCHES MIN. MAX. ### 48-Lead Thin Shrunk Small Outline Package Z48 DIMENSIONS IN INCHES MIN. MAX. ti.com 30-Mar-2005 ### **PACKAGING INFORMATION** | Orderable Device | Status ⁽¹⁾ | Package
Type | Package
Drawing | Pins Package
Qty | Eco Plan ⁽²⁾ | Lead/Ball Finish | MSL Peak Temp ⁽³⁾ | |--------------------|-----------------------|-----------------|--------------------|---------------------|-------------------------|------------------|------------------------------| | CY74FCT163373CPAC | OBSOLETE | TSSOP | DGG | 48 | TBD | Call TI | Call TI | | CY74FCT163373CPACT | OBSOLETE | TSSOP | DGG | 48 | TBD | Call TI | Call TI | | CY74FCT163373CPVC | OBSOLETE | SSOP | DL | 48 | TBD | Call TI | Call TI | | CY74FCT163373CPVCT | OBSOLETE | SSOP | DL | 48 | TBD | Call TI | Call TI | (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. **Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. ### DL (R-PDSO-G**) ### **48 PINS SHOWN** ### PLASTIC SMALL-OUTLINE PACKAGE NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15). D. Falls within JEDEC MO-118 # DGG (R-PDSO-G**) # PLASTIC SMALL-OUTLINE PACKAGE ### **48 PINS SHOWN** NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold protrusion not to exceed 0,15. D. Falls within JEDEC MO-153 ### **IMPORTANT NOTICE** Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: | Products | | Applications | | |------------------|------------------------|--------------------|---------------------------| | Amplifiers | amplifier.ti.com | Audio | www.ti.com/audio | | Data Converters | dataconverter.ti.com | Automotive | www.ti.com/automotive | | DSP | dsp.ti.com | Broadband | www.ti.com/broadband | | Interface | interface.ti.com | Digital Control | www.ti.com/digitalcontrol | | Logic | logic.ti.com | Military | www.ti.com/military | | Power Mgmt | power.ti.com | Optical Networking | www.ti.com/opticalnetwork | | Microcontrollers | microcontroller.ti.com | Security | www.ti.com/security | | | | Telephony | www.ti.com/telephony | | | | Video & Imaging | www.ti.com/video | | | | Wireless | www.ti.com/wireless | Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright © 2005, Texas Instruments Incorporated