

# System Clock Chip for ATI RS480 K8-based Systems

#### **Recommended Application:**

ATI RS480 systems using AMD K8 processors

#### **Output Features:**

- 3 14.318 MHz REF clocks
- 1 USB 48MHz USB clock
- 1 HyperTransport 66 MHz clock seed
- 1 PCI 33 MHz clock seed
- 2 Pairs of AMD K8 clocks
- 6 Pairs of SRC/PCI Express\* clocks
- 2 Pairs of ATIG (SRC/PCI Express) clocks

#### Features:

- 2 Programmable Clock Request pins for SRC clocks
- Spread Spectrum for EMI reduction
- · Outputs may be disabled via SMBus
- External crystal load capacitors for maximum frequency accuracy

## **Pin Configuration**

Note: Pins preceded by '\*\*' have a 120 Kohm Internal Pull Down resistor

#### 56 Pin SSOP/TSSOP

## **Power Groups**

| Pin              | Number              | Decementar       |  |  |  |
|------------------|---------------------|------------------|--|--|--|
| VDD              | GND                 | Description      |  |  |  |
| 56               | 55                  | Xtal, REF        |  |  |  |
| 51               | 49                  | PCICLK output    |  |  |  |
| 48               | 46                  | HTTCLK output    |  |  |  |
| 43               | 42                  | CPU Outputs      |  |  |  |
| 14, 21,<br>32,35 | 15, 20,<br>26,31,36 | SRC outputs      |  |  |  |
| 39               | 38                  | Analog, CPU PLL  |  |  |  |
| 3                | 5                   | USB_48MHz output |  |  |  |

## **Functionality**

| FS2 | EC1 | FS1 FS0 |        | HTT   | PCI   |
|-----|-----|---------|--------|-------|-------|
| Г32 | F31 | F30     | MHz    | MHz   | MHz   |
| 0   | 0   | 0       | Hi-Z   | Hi-Z  | Hi-Z  |
| 0   | 0   | 1       | Х      | X/3   | X/6   |
| 0   | 1   | 0       | 180.00 | 60.00 | 30.00 |
| 0   | 1   | 1       | 220.00 | 73.12 | 36.56 |
| 1   | 0   | 0       | 100.00 | 66.66 | 33.33 |
| 1   | 0   | 1       | 133.33 | 66.66 | 33.33 |
| 1   | 1   | 1       | 200.00 | 66.66 | 33.33 |

1232A-06/12/06

\*Other names and brands may be claimed as the property of others.

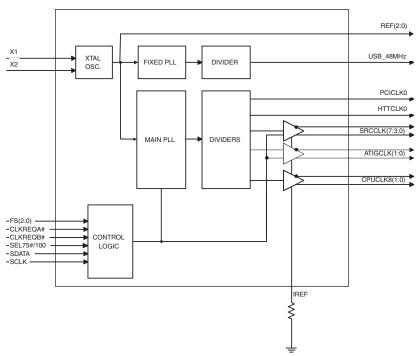


# **Pin Descriptions**

| PIN<br># | PIN NAME   | PIN<br>TYPE | DESCRIPTION                                                      |
|----------|------------|-------------|------------------------------------------------------------------|
| 1        | X1         | IN          | Crystal input, Nominally 14.318MHz.                              |
| 2        | X2         | OUT         | Crystal output, Nominally 14.318MHz                              |
| 3        | VDD48      | PWR         | Power pin for the 48MHz output.3.3V                              |
| 4        | USB_48MHz  | OUT         | 48.00MHz USB clock                                               |
| 5        | GND        | PWR         | Ground pin.                                                      |
| 6        | NC         | N/A         | No Connection.                                                   |
| 7        | SCLK       | IN          | Clock pin of SMBus circuitry, 5V tolerant.                       |
| 8        | SDATA      | I/O         | Data pin for SMBus circuitry, 5V tolerant.                       |
| 9        | **FS2      | IN          | Frequency select pin.                                            |
|          |            |             | Output enable for PCI Express (SRC) outputs. SMBus selects which |
| 10       | **CLKREQA# | IN          | outputs are controlled.                                          |
|          |            |             | 0 = enabled, 1 = tri-stated                                      |
|          |            |             | Output enable for PCI Express (SRC) outputs. SMBus selects which |
| 11       | **CLKREQB# | IN          | outputs are controlled.                                          |
|          |            |             | 0 = enabled, 1 = tri-stated                                      |
| 12       | SRCCLKT7   | OUT         | True clock of differential SRC clock pair.                       |
| 13       | SRCCLKC7   | OUT         | Complement clock of differential SRC clock pair.                 |
| 14       | VDDSRC     | PWR         | Supply for SRC clocks, 3.3V nominal                              |
| 15       | GNDSRC     | PWR         | Ground pin for the SRC outputs                                   |
| 16       | SRCCLKT6   | OUT         | True clock of differential SRC clock pair.                       |
| 17       | SRCCLKC6   | OUT         | Complement clock of differential SRC clock pair.                 |
| 18       | SRCCLKT5   | OUT         | True clock of differential SRC clock pair.                       |
| 19       | SRCCLKC5   | OUT         | Complement clock of differential SRC clock pair.                 |
| 20       | GNDSRC     | PWR         | Ground pin for the SRC outputs                                   |
| 21       | VDDSRC     | PWR         | Supply for SRC clocks, 3.3V nominal                              |
| 22       | SRCCLKT4   | OUT         | True clock of differential SRC clock pair.                       |
| 23       | SRCCLKC4   | OUT         | Complement clock of differential SRC clock pair.                 |
| 24       | SRCCLKT3   | OUT         | True clock of differential SRC clock pair.                       |
| 25       | SRCCLKC3   | OUT         | Complement clock of differential SRC clock pair.                 |
| 26       | GNDSRC     | PWR         | Ground pin for the SRC outputs                                   |
| 27       | ATIGCLKT1  | OUT         | True clock of differential SRC clock pair.                       |
| 28       | ATIGCLKC1  | OUT         | Complementary clock of differential SRC clock pair.              |



# **Pin Descriptions (Continued)**


| PIN<br># | PIN NAME   | Туре | Pin Description                                                                                                                                                                                                                       |
|----------|------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 29       | ATIGCLKC0  | OUT  | Complementary clock of differential SRC clock pair.                                                                                                                                                                                   |
| 30       | ATIGCLKT0  | OUT  | True clock of differential SRC clock pair.                                                                                                                                                                                            |
| 31       | GNDATI     | PWR  | Ground for ATI Gclocks, nominal 3.3V                                                                                                                                                                                                  |
| 32       | VDDATI     | PWR  | Power supply ATI Gclocks, nominal 3.3V                                                                                                                                                                                                |
| 33       | SRCCLKC0   | OUT  | Complement clock of differential SRC clock pair.                                                                                                                                                                                      |
| 34       | SRCCLKT0   | OUT  | True clock of differential SRC clock pair.                                                                                                                                                                                            |
| 35       | VDDSRC     | PWR  | Supply for SRC clocks, 3.3V nominal                                                                                                                                                                                                   |
| 36       | GNDSRC     | PWR  | Ground pin for the SRC outputs                                                                                                                                                                                                        |
| 37       | IREF       | OUT  | This pin establishes the reference current for the differential current-mode output pairs. This pin requires a fixed precision resistor tied to ground in order to establish the appropriate current. 475 ohms is the standard value. |
| 38       | GNDA       | PWR  | Ground pin for the PLL core.                                                                                                                                                                                                          |
| 39       | VDDA       | PWR  | 3.3V power for the PLL core.                                                                                                                                                                                                          |
| 40       | CPUCLK8C1  | OUT  | Complementary clock of differential 3.3V push-pull K8 pair.                                                                                                                                                                           |
| 41       | CPUCLK8T1  | OUT  | True clock of differential 3.3V push-pull K8 pair.                                                                                                                                                                                    |
| 42       | GNDCPU     | PWR  | Ground pin for the CPU outputs                                                                                                                                                                                                        |
| 43       | VDDCPU     | PWR  | Supply for CPU clocks, 3.3V nominal                                                                                                                                                                                                   |
| 44       | CPUCLK8C0  | OUT  | Complementary clock of differential 3.3V push-pull K8 pair.                                                                                                                                                                           |
| 45       | CPUCLK8T0  | OUT  | True clock of differential 3.3V push-pull K8 pair.                                                                                                                                                                                    |
| 46       | GNDHTT     | PWR  | Ground pin for the HTT outputs                                                                                                                                                                                                        |
| 47       | HTTCLK0    | OUT  | 3.3V Hyper Transport output                                                                                                                                                                                                           |
| 48       | VDDHTT     | PWR  | Supply for HTT clocks, nominal 3.3V.                                                                                                                                                                                                  |
| 49       | GNDPCI     | PWR  | Ground pin for the PCI outputs                                                                                                                                                                                                        |
| 50       | PCICLK0    | OUT  | PCI clock output.                                                                                                                                                                                                                     |
| 51       | VDDPCI     | PWR  | Power supply for PCI clocks, nominal 3.3V                                                                                                                                                                                             |
| 52       | REF2       | OUT  | 14.318 MHz reference clock.                                                                                                                                                                                                           |
| 53       | **FS1/REF1 | I/O  | Frequency select latch input pin / 14.318 MHz reference clock.                                                                                                                                                                        |
| 54       | **FS0/REF0 | I/O  | Frequency select latch input pin / 14.318 MHz reference clock.                                                                                                                                                                        |
| 55       | GND        | PWR  | Ground pin.                                                                                                                                                                                                                           |
| 56       | VDDREF     | PWR  | Ref, XTAL power supply, nominal 3.3V                                                                                                                                                                                                  |



## **General Description**

The ICS951412B is a main clock synthesizer chip that provides all clocks required for ATI RS480-based systems. An SMBus interface allows full control of the device.

## **Block Diagram**



## **Skew Characteristics**

| Parameter                  | Description                 | Test Conditons                                 | Skew<br>Window | Unit |
|----------------------------|-----------------------------|------------------------------------------------|----------------|------|
| T <sub>sk_CPU_CPU</sub>    |                             | measured at x-ing of CPU,                      | 250            | ps   |
|                            |                             | measured at x-ing of CPU,                      |                |      |
| T <sub>sk_CPU_PCI</sub>    |                             | 1.5V of PCI clock                              | 2000           | ps   |
|                            | time independent            | measured between rising                        |                |      |
| T <sub>sk_PCI_PCI</sub>    | skew                        | edge at 1.5V                                   | 500            | ps   |
|                            | not dependent on            | measured between rising                        |                |      |
| T <sub>sk_PCl33-HT66</sub> | V, T changes                | edge at 1.5V                                   | 500            | ps   |
| T <sub>sk_CPU_HT66</sub>   | v, r changes                | measured between rising edge at 1.5V           | 2000           | ps   |
| · SK_CPU_HI66              |                             | measured at x-ing of CPU,                      | 2000           | РО   |
| T <sub>sk_CPU_HT66</sub>   |                             | 1.5V of PCI clock                              | 500            | ps   |
| T <sub>sk_CPU_CPU</sub>    |                             | measured at x-ing of CPU,                      | 200            | ps   |
| T <sub>sk_CPU_PCI</sub>    |                             | measured at x-ing of CPU,<br>1.5V of PCI clock | 200            | ps   |
| T <sub>sk_PCI_PCI</sub>    | time variant skew           | measured between rising edge at 1.5V           | 200            | ps   |
| T <sub>sk_PCl33-HT66</sub> | varies over<br>V, T changes | measured between rising edge at 1.5V           | 200            | ps   |
| T <sub>sk_CPU_HT66</sub>   |                             | measured between rising edge at 1.5V           | 200            | ps   |
| T <sub>sk_CPU_HT66</sub>   |                             | measured at x-ing of CPU,<br>1.5V of PCI clock | 200            | ps   |



## General SMBus serial interface information

#### **How to Write:**

- · Controller (host) sends a start bit.
- Controller (host) sends the write address D2 (H)
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) sends the data byte count = X
- ICS clock will acknowledge
- Controller (host) starts sending Byte N through Byte N + X -1 (see Note 2)
- ICS clock will acknowledge each byte one at a time
- · Controller (host) sends a Stop bit

| In    | dex Block W                 | /rit   | e Operation          |  |  |
|-------|-----------------------------|--------|----------------------|--|--|
| Coi   | ntroller (Host)             |        | ICS (Slave/Receiver) |  |  |
| Т     | starT bit                   |        |                      |  |  |
| Slav  | e Address D2 <sub>(H)</sub> |        |                      |  |  |
| WR    | WRite                       |        |                      |  |  |
|       |                             |        | ACK                  |  |  |
| Beg   | inning Byte = N             |        |                      |  |  |
|       |                             |        | ACK                  |  |  |
| Data  | Byte Count = X              |        |                      |  |  |
|       |                             |        | ACK                  |  |  |
| Begir | nning Byte N                |        |                      |  |  |
|       |                             |        | ACK                  |  |  |
|       | 0                           | ţe     |                      |  |  |
|       | 0                           | X Byte | 0                    |  |  |
|       | 0                           | ×      | 0                    |  |  |
|       |                             |        | 0                    |  |  |
| Byte  | e N + X - 1                 |        |                      |  |  |
|       |                             |        | ACK                  |  |  |
| Р     | stoP bit                    | Ü      |                      |  |  |

## How to Read:

- · Controller (host) will send start bit.
- Controller (host) sends the write address D2<sub>(H)</sub>
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) will send a separate start bit.
- Controller (host) sends the read address D3 (H)
- ICS clock will acknowledge
- ICS clock will send the data byte count = X
- ICS clock sends Byte N + X -1
- ICS clock sends Byte 0 through byte X (if X<sub>(H)</sub> was written to byte 8).
- · Controller (host) will need to acknowledge each byte
- · Controllor (host) will send a not acknowledge bit
- · Controller (host) will send a stop bit

| In    | dex Block Rea               | ad     | Operation          |  |  |
|-------|-----------------------------|--------|--------------------|--|--|
| Cor   | ntroller (Host)             | IC     | S (Slave/Receiver) |  |  |
| Т     | starT bit                   |        |                    |  |  |
| Slave | e Address D2 <sub>(H)</sub> |        |                    |  |  |
| WR    | WRite                       |        |                    |  |  |
|       |                             |        | ACK                |  |  |
| Begi  | nning Byte = N              |        |                    |  |  |
|       |                             |        | ACK                |  |  |
| RT    | Repeat starT                |        |                    |  |  |
| Slave | e Address D3 <sub>(H)</sub> |        |                    |  |  |
| RD    | ReaD                        |        |                    |  |  |
|       |                             |        | ACK                |  |  |
|       |                             |        |                    |  |  |
|       |                             |        | ata Byte Count = X |  |  |
|       | ACK                         |        |                    |  |  |
|       |                             |        | Beginning Byte N   |  |  |
|       | ACK                         |        |                    |  |  |
|       |                             | X Byte | 0                  |  |  |
|       | 0                           | B)     | 0                  |  |  |
| 0     |                             | ×      | 0                  |  |  |
| 0     |                             |        |                    |  |  |
|       |                             |        | Byte N + X - 1     |  |  |
| N     | Not acknowledge             |        |                    |  |  |
| Р     | stoP bit                    |        |                    |  |  |



**Table1: CPU Frequency Selection Table** 

| CPU<br>SS_EN<br>(B0:b4) | CPU Frequ<br>CPU FS3<br>(B0:b3) | CPU<br>FS2 | CPU<br>FS1 | CPU<br>FS0 | CPU<br>(MHz) | HTT66<br>(MHz) | PCI33<br>(MHz) | Spread<br>% |
|-------------------------|---------------------------------|------------|------------|------------|--------------|----------------|----------------|-------------|
| 0                       | 0                               | 0          | 0          | 0          | Hi-Z         | Hi-Z           | Hi-Z           | None        |
| 0                       | 0                               | 0          | 0          | 1          | X/6          | X/12           | X/24           | None        |
| 0                       | 0                               | 0          | 1          | 0          | 180.00       | 60.00          | 30.00          | None        |
| 0                       | 0                               | 0          | 1          | 1          | 220.00       | 73.33          | 36.67          | None        |
| 0                       | 0                               | 1          | 0          | 0          | 100.00       | 66.67          | 33.33          | None        |
| 0                       | 0                               | 1          | 0          | 1          | 133.33       | 66.67          | 33.33          | None        |
| 0                       | 0                               | 1          | 1          | 0          | 166.67       | 66.67          | 33.33          | None        |
| 0                       | 0                               | 1          | 1          | 1          | 200.00       | 66.67          | 33.33          | None        |
| 0                       | 1                               | 0          | 0          | 0          | 186.00       | 62.00          | 31.00          | None        |
| 0                       | 1                               | 0          | 0          | 1          | 214.00       | 71.33          | 35.67          | None        |
| 0                       | 1                               | 0          | 1          | 0          | 190.00       | 63.33          | 31.67          | None        |
| 0                       | 1                               | 0          | 1          | 1          | 210.00       | 70.00          | 35.00          | None        |
| 0                       | 1                               | 1          | 0          | 0          | 102.00       | 68.00          | 34.00          | None        |
| 0                       | 1                               | 1          | 0          | 1          | 136.00       | 68.00          | 34.00          | None        |
| 0                       | 1                               | 1          | 1          | 0          | 170.00       | 68.00          | 34.00          | None        |
| 0                       | 1                               | 1          | 1          | 1          | 204.00       | 68.00          | 34.00          | None        |
| 1                       | 0                               | 0          | 0          | 0          | 169.58       | 56.53          | 28.26          | -0.5%       |
| 1                       | 0                               | 0          | 0          | 1          | 229.43       | 76.48          | 38.24          | -0.5%       |
| 1                       | 0                               | 0          | 1          | 0          | 179.55       | 59.85          | 29.93          | -0.5%       |
| 1                       | 0                               | 0          | 1          | 1          | 219.45       | 73.15          | 36.58          | -0.5%       |
| 1                       | 0                               | 1          | 0          | 0          | 99.75        | 66.50          | 33.25          | -0.5%       |
| 1                       | 0                               | 1          | 0          | 1          | 133.00       | 66.50          | 33.25          | -0.5%       |
| 1                       | 0                               | 1          | 1          | 0          | 166.25       | 66.50          | 33.25          | -0.5%       |
| 1                       | 0                               | 1          | 1          | 1          | 199.50       | 66.50          | 33.25          | -0.5%       |
| 1                       | 1                               | 0          | 0          | 0          | 185.54       | 61.85          | 30.92          | -0.5%       |
| 1                       | 1                               | 0          | 0          | 1          | 106.73       | 71.16          | 35.58          | -0.5%       |
| 1                       | 1                               | 0          | 1          | 0          | 189.53       | 63.18          | 31.59          | -0.5%       |
| 1                       | 1                               | 0          | 1          | 1          | 209.48       | 69.83          | 34.91          | -0.5%       |
| 1                       | 1                               | 1          | 0          | 0          | 101.75       | 67.83          | 33.92          | -0.5%       |
| 1                       | 1                               | 1          | 0          | 1          | 135.66       | 67.83          | 33.91          | -0.5%       |
| 1                       | 1                               | 1          | 1          | 0          | 169.58       | 67.83          | 33.92          | -0.5%       |
| 1                       | 1                               | 1          | 1          | 1          | 203.49       | 67.83          | 33.92          | -0.5%       |



Table2: SRC & ATIG Frequency Selection Table

|                         | В          | yte 5      | aonoy      |            |                    |        |  |
|-------------------------|------------|------------|------------|------------|--------------------|--------|--|
| Bit4                    | Bit3       | Bit2       | Bit1       | Bit0       | SRC(7:3,0),        | Spread |  |
| SRC<br>Spread<br>Enable | SRC<br>FS3 | SRC<br>FS2 | SRC<br>FS1 | SRC<br>FS0 | ATIG(1:0)<br>(MHz) | %      |  |
| 0                       | 0          | 0          | 0          | 0          | 100.00             | 0      |  |
| 0                       | 0          | 0          | 0          | 1          | 100.00             | 0      |  |
| 0                       | 0          | 0          | 1          | 0          | 100.00             | 0      |  |
| 0                       | 0          | 0          | 1          | 1          | 100.00             | 0      |  |
| 0                       | 0          | 1          | 0          | 0          | 101.00             | 0      |  |
| 0                       | 0          | 1          | 0          | 1          | 101.00             | 0      |  |
| 0                       | 0          | 1          | 1          | 0          | 101.00             | 0      |  |
| 0                       | 0          | 1          | 1          | 1          | 101.00             | 0      |  |
| 0                       | 1          | 0          | 0          | 0          | 102.00             | 0      |  |
| 0                       | 1          | 0          | 0          | 1          | 102.00             | 0      |  |
| 0                       | 1          | 0          | 1          | 0          | 102.00             | 0      |  |
| 0                       | 1          | 0          | 1          | 1          | 102.00             | 0      |  |
| 0                       | 1          | 1          | 0          | 0          | 104.00             | 0      |  |
| 0                       | 1          | 1          | 0          | 1          | 104.00             | 0      |  |
| 0                       | 1          | 1          | 1          | 0          | 104.00             | 0      |  |
| 0                       | 1          | 1          | 1          | 1          | 104.00             | 0      |  |
| 1                       | 0          | 0          | 0          | 0          | 99.75              | -0.5%  |  |
| 1                       | 0          | 0          | 0          | 1          | 99.75              | -0.5%  |  |
| 1                       | 0          | 0          | 1          | 0          | 99.75              | -0.5%  |  |
| 1                       | 0          | 0          | 1          | 1          | 99.75              | -0.5%  |  |
| 1                       | 0          | 1          | 0          | 0          | 100.74             | -0.5%  |  |
| 1                       | 0          | 1          | 0          | 1          | 100.74             | -0.5%  |  |
| 1                       | 0          | 1          | 1          | 0          | 100.74             | -0.5%  |  |
| 1                       | 0          | 1          | 1          | 1          | 100.74             | -0.5%  |  |
| 1                       | 1          | 0          | 0          | 0          | 101.74             | -0.5%  |  |
| 1                       | 1          | 0          | 0          | 1          | 101.74             | -0.5%  |  |
| 1                       | 1          | 0          | 1          | 0          | 101.74             | -0.5%  |  |
| 1                       | 1          | 0          | 1          | 1          | 101.74             | -0.5%  |  |
| 1                       | 1          | 1          | 0          | 0          | 103.74             | -0.5%  |  |
| 1                       | 1          | 1          | 0          | 1          | 103.74             | -0.5%  |  |
| 1                       | 1          | 1          | 1          | 0          | 103.74             | -0.5%  |  |
| 1                       | 1          | 1          | 1          | 1          | 103.74             | -0.5%  |  |

# RENESAS

**SMBus Table: Frequency Select Register** 

| Byt   | te 0          | Pin # | Name      | Control Function                           | Туре | 0                  | 1             | PWD     |
|-------|---------------|-------|-----------|--------------------------------------------|------|--------------------|---------------|---------|
| Bit 7 | 7 - FS Source |       | FS Source | Latched Input or SMBus<br>Frequency Select | RW   | Latched Inputs     | SMBus         | 0       |
| Bit 6 |               | -     | CPU SS_EN | CPU Spread Enable                          | RW   | OFF                | ON            | 0       |
| Bit 5 |               | -     | Reserved  | Reserved                                   | RW   | Reserved           | Reserved      | Χ       |
| Bit 4 |               | -     | CPU FS4   | Freq Select Bit 4                          | RW   |                    | 0             |         |
| Bit 3 |               | -     | CPU FS3   | Freq Select Bit 3                          | RW   |                    |               | 0       |
| Bit 2 |               | -     | CPU FS2   | Freq Select Bit 2                          | RW   | See Table 1: CPU I | -<br>requency | Latched |
| Bit 1 |               |       | CPU FS1   | Freq Select Bit 1                          | RW   | -                  |               | Latched |
| Bit 0 |               | -     | CPU FS0   | Freq Select Bit 0                          | RW   |                    |               | Latched |

Note: Byte 0 Bit 6, Byte 0 Bit 4 and Byte 5 Bit 4 must be set to '1' to fully enable spread.

**SMBus Table: Output Control Register** 

| Byt   | e 1 Pin# | Name       | Control Function | Туре | 0       | 1      | PWD |
|-------|----------|------------|------------------|------|---------|--------|-----|
| Bit 7 | 50       | PCICLK0    | Output Enable    | RW   | Disable | Enable | 1   |
| Bit 6 | 47       | HTTCLK0    | Output Enable    | RW   | Disable | Enable | 1   |
| Bit 5 | 4        | USB_48MHz  | Output Enable    | RW   | Disable | Enable | 1   |
| Bit 4 | 54       | REF0       | Output Enable    | RW   | Disable | Enable | 1   |
| Bit 3 | 53       | REF1       | Output Enable    | RW   | Disable | Enable | 1   |
| Bit 2 | 52       | REF2       | Output Enable    | RW   | Disable | Enable | 1   |
| Bit 1 | 45,44    | CPUCLK8(0) | Output Enable    | RW   | Disable | Enable | 1   |
| Bit 0 | 41,40    | CPUCLK8(1) | Output Enable    | RW   | Disable | Enable | 1   |

SMBus Table: CLKREQB# Output Control Register

| Byl   | e 2 Pin | n # Name | Control Function       | Туре | 0                | 1        | PWD |
|-------|---------|----------|------------------------|------|------------------|----------|-----|
| Bit 7 | 12,13   | REQBSRC7 | CLKREQB# Controls SRC7 | RW   | Does not control | Controls | 0   |
| Bit 6 | 16,17   | REQBSRC6 | CLKREQB# Controls SRC6 | RW   | Does not control | Controls | 0   |
| Bit 5 | 18,19   | REQBSRC5 | CLKREQB# Controls SRC5 | RW   | Does not control | Controls | 0   |
| Bit 4 | 22,23   | REQBSRC4 | CLKREQB# Controls SRC4 | RW   | Does not control | Controls | 0   |
| Bit 3 | 24,25   | REQBSRC3 | CLKREQB# Controls SRC3 | RW   | Does not control | Controls | 0   |
| Bit 2 | -       | Reserved | Reserved               | RW   | Reserved         | Reserved | Χ   |
| Bit 1 | -       | Reserved | Reserved               | RW   | Reserved         | Reserved | Х   |
| Bit 0 | 34,33   | REQBSRC0 | CLKREQB# Controls SRC0 | RW   | Does not control | Controls | 0   |

# RENESAS

SMBus Table: SRCCLK(7:3,0), CLKREQA# Output Control Register

| Byt   | te 3 Pin # | Name     | Control Function            | Туре | 0                | 1        | PWD |
|-------|------------|----------|-----------------------------|------|------------------|----------|-----|
| Bit 7 | 12,13      | SRCCLK7  |                             | RW   | Disable          | Enable   | 1   |
| Bit 6 | 16,17      | SRCCLK6  | Master Output control.      | RW   | Disable          | Enable   | 1   |
| Bit 5 | 18,19      | SRCCLK5  | Enables or disables output, | RW   | Disable          | Enable   | 1   |
| Bit 4 | 22,23      | SRCCLK4  | regardless of CLKREQ#       | RW   | Disable          | Enable   | 1   |
| Bit 3 | 24,25      | SRCCLK3  | inputs.                     | RW   | Disable          | Enable   | 1   |
| Bit 2 | 34,33      | SRCCLK0  |                             | RW   | Disable          | Enable   | 1   |
| Bit 1 | 24,25      | REQASRC3 | CLKREQA# Controls SRC3      | RW   | Does not control | Controls | 0   |
| Bit 0 | 34,33      | REQASRC0 | CLKREQA# Controls SRC0      | RW   | Does not control | Controls | 0   |

SMBus Table: SRCCLK(3,0), ATIGCLK Output Control Register

| Byl   | te 4 Pin # | Name      | Control Function                      | Туре | 0                | 1        | PWD |
|-------|------------|-----------|---------------------------------------|------|------------------|----------|-----|
| Bit 7 | 12,13      | REQASRC7  | CLKREQA# Controls SRC7                | RW   | Does not control | Controls | 0   |
| Bit 6 | 16,17      | REQASRC6  | CLKREQA# Controls SRC6                | RW   | Does not control | Controls | 0   |
| Bit 5 | 18,19      | REQASRC5  | CLKREQA# Controls SRC5                | RW   | Does not control | Controls | 0   |
| Bit 4 | 22,23      | REQASRC4  | CLKREQA# Controls SRC4                | RW   | Does not control | Controls | 0   |
| Bit 3 | 27,28      | ATIGCLK1  | Output Enable These outputs cannot be | RW   | Disabled         | Enabled  | 1   |
| Bit 2 | 30,29      | ATIGCLK0  | controlled by CLKREQ# pins.           | RW   | Disabled         | Enabled  | 1   |
| Bit 1 | -          | Reserved  | Reserved                              | RW   | Reserved         | Reserved | 0   |
| Bit 0 | 4          | USB_48Str | 48MHz Strength Control                | RW   | 1X               | 2X       | 0   |

Note: Do NOT simultaneously select CLKREQA# and CLKREQB# to control an SRC output. Behavior of the device is undefined under these conditions.

SMBus Table: Output Drive and ATIG Frequency Control Register

| Byt   | e 5 Pin # | Name     | Control Function      | Туре | 0                       | 1        | PWD |
|-------|-----------|----------|-----------------------|------|-------------------------|----------|-----|
| Bit 7 | 52        | REF2Str  | REF2 Strength Control | RW   | 1X                      | 2X       | 0   |
| Bit 6 | -         | Reserved | Reserved              | RW   | Reserved                | Reserved | 0   |
| Bit 5 | -         | Reserved | Reserved              | RW   | Reserved                | Reserved | 0   |
| Bit 4 | -         | SRC SSEN | SRC Spread Enable     | RW   |                         | •        | 0   |
| Bit 3 | -         | SRCFS3   | Freq Select Bit 3     | RW   | See Table               | g.       | 0   |
| Bit 2 | -         | SRCFS2   | Freq Select Bit 2     | RW   |                         |          | 0   |
| Bit 1 | -         | SRCFS1   | Freq Select Bit 1     | RW   | SRC Frequency Selection |          | 0   |
| Bit 0 | -         | SRCFS0   | Freq Select Bit 0     | RW   |                         |          | 0   |

# RENESAS

SMBus Table: Device ID Register

| Byl   | te 6 Pi | in # | Name    | Control Function | Туре | 0 | 1 | PWD |
|-------|---------|------|---------|------------------|------|---|---|-----|
| Bit 7 | -       |      | DevID 7 | Device ID MSB    | R    | - | - | 0   |
| Bit 6 | -       |      | DevID 6 | Device ID 6      | R    | - | - | 0   |
| Bit 5 | -       |      | DevID 5 | Device ID 5      | R    | - | - | 0   |
| Bit 4 | -       |      | DevID 4 | Device ID4       | R    | - | - | 1   |
| Bit 3 | -       |      | DevID 3 | Device ID3       | R    | - | - | 0   |
| Bit 2 | -       |      | DevID 2 | Device ID2       | R    | - | - | 0   |
| Bit 1 | -       |      | DevID 1 | Device ID1       | R    | - | - | 1   |
| Bit 0 | -       |      | DevID 0 | Device ID LSB    | R    | - | - | 0   |

**SMBus Table: Vendor ID Register** 

| Byt   | te 7 Pin # | Name | Control Function | Type | 0 | 1 | PWD |
|-------|------------|------|------------------|------|---|---|-----|
| Bit 7 | -          | RID3 |                  | R    | - | - | Χ   |
| Bit 6 | -          | RID2 | Davisian ID      | R    | - | - | Χ   |
| Bit 5 | -          | RID1 | Revision ID      | R    | - | - | Х   |
| Bit 4 | -          | RID0 |                  | R    | - | - | Х   |
| Bit 3 | -          | VID3 |                  | R    | - | - | 0   |
| Bit 2 | -          | VID2 | VENDOR ID        | R    | - | - | 0   |
| Bit 1 | -          | VID1 | (0001 = ICS)     | R    | - | - | 0   |
| Bit 0 | -          | VID0 |                  | R    | - | - | 1   |

**SMBus Table: Byte Count Register** 

|       | raisier zyte | o cum magnata. |                        | _    |                   |                |     |
|-------|--------------|----------------|------------------------|------|-------------------|----------------|-----|
| Byte  | 8 Pin #      | Name           | Control Function       | Type | 0                 | 1              | PWD |
| Bit 7 | -            | BC7            |                        | RW   |                   |                | 0   |
| Bit 6 | -            | BC6            |                        | RW   |                   | 0              |     |
| Bit 5 | -            | BC5            |                        | RW   | Writing to this r | 0              |     |
| Bit 4 | -            | BC4            | Byte Count Programming | RW   | configure how n   | 0              |     |
| Bit 3 | -            | BC3            | b(7:0)                 | RW   | will be read back | , default is 9 | 1   |
| Bit 2 | -            | BC2            |                        | RW   | bytes             |                | 0   |
| Bit 1 | -            | BC1            |                        | RW   |                   |                | 0   |
| Bit 0 | -            | BC0            |                        | RW   |                   |                | 1   |

Bytes 9 to 21 are reserved



## **Absolute Maximum Ratings**

Logic Inputs . . . . . . . . . . . . . . . . GND -0.5 V to V<sub>DD</sub> +3.8 V

Ambient Operating Temperature . . . . . 0°C to +70°C Storage Temperature . . . . . -65°C to +150°C

ESD Protection . . . . . . . . Input ESD protection usung human body model > 1KV

Stresses above those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only and functional operation of the device at these or any other conditions above those listed in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

#### Electrical Characteristics - Input/Supply/Common Output Parameters

 $T_A = 0 - 70$ °C; Supply Voltage  $V_{DD} = 3.3 \text{ V +/-5}\%$ 

| PARAMETER                                       | SYMBOL               | CONDITIONS                                                        | MIN                   | TYP      | MAX            | UNITS | NOTES |
|-------------------------------------------------|----------------------|-------------------------------------------------------------------|-----------------------|----------|----------------|-------|-------|
| Input High Voltage                              | V <sub>IH</sub>      | 3.3 V +/-5%                                                       | 2                     |          | $V_{DD} + 0.3$ | V     | 1     |
| Input Low Voltage                               | V <sub>IL</sub>      | 3.3 V +/-5%                                                       | V <sub>SS</sub> - 0.3 |          | 0.8            | V     | 1     |
| Input High Current                              | I <sub>IH</sub>      | $V_{IN} = V_{DD}$                                                 | -5                    |          | 5              | uA    | 1     |
| Input Low Current                               | I <sub>IL1</sub>     | $V_{IN} = 0 V$ ; Inputs with no pull-up resistors                 | -5                    |          |                | uA    | 1     |
| imput Low Current                               | I <sub>IL2</sub>     | V <sub>IN</sub> = 0 V; Inputs with pull-up resistors              | -200                  |          |                | uA    | 1     |
| Operating Current                               | I <sub>DD3.3OP</sub> | all outputs driven                                                |                       |          | 300            | mA    |       |
| Input Frequency <sup>3</sup>                    | Fi                   | $V_{DD} = 3.3 \text{ V}$                                          |                       | 14.31818 |                | MHz   | 3     |
| Pin Inductance <sup>1</sup>                     | $L_{pin}$            |                                                                   |                       |          | 7              | nΗ    | 1     |
|                                                 | $C_{IN}$             | Logic Inputs                                                      |                       |          | 5              | pF    | 1     |
| Input Capacitance <sup>1</sup>                  | C <sub>OUT</sub>     | Output pin capacitance                                            |                       |          | 6              | pF    | 1     |
|                                                 | C <sub>INX</sub>     | X1 & X2 pins                                                      |                       |          | 5              | pF    | 1     |
| Clk Stabilization <sup>1,2</sup>                | T <sub>STAB</sub>    | From V <sub>DD</sub> Power-Up or de-assertion of PD# to 1st clock |                       |          | 3              | ms    | 1,2   |
| Modulation Frequency                            |                      | Triangular Modulation                                             | 30                    |          | 33             | kHz   | 1     |
| SMBus Voltage                                   | $V_{DD}$             |                                                                   | 2.7                   |          | 5.5            | V     | 1     |
| Low-level Output Voltage                        | $V_{OL}$             | @ I <sub>PULLUP</sub>                                             |                       |          | 0.4            | V     | 1     |
| Current sinking at V <sub>OL</sub> = 0.4 V      | I <sub>PULLUP</sub>  |                                                                   | 4                     |          |                | mA    | 1     |
| SCLK/SDATA<br>Clock/Data Rise Time <sup>3</sup> | T <sub>RI2C</sub>    | (Max VIL - 0.15) to (Min VIH + 0.15)                              |                       |          | 1000           | ns    | 1     |
| SCLK/SDATA<br>Clock/Data Fall Time <sup>3</sup> | T <sub>FI2C</sub>    | (Min VIH + 0.15) to (Max VIL - 0.15)                              |                       |          | 300            | ns    | 1     |

<sup>&</sup>lt;sup>1</sup>Guaranteed by design and characterization, not 100% tested in production.

<sup>&</sup>lt;sup>2</sup>See timing diagrams for timing requirements.

<sup>&</sup>lt;sup>3</sup> Input frequency should be measured at the REFOUT pin and tuned to ideal 14.31818MHz to meet ppm frequency accuracy on PLL outputs.



## **Electrical Characteristics - K8 Push Pull Differential Pair**

 $T_A = 0 - 70$ °C;  $V_{DD} = 3.3 \text{ V +/-}5\%$ ;  $C_L = AMD64 \text{ Processor Test Load}$ 

| PARAMETER                                   | SYMBOL                | CONDITIONS                                                                                                                                                          | MIN   | TYP  | MAX  | UNITS | NOTES |
|---------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|------|-------|-------|
| Rising Edge Rate                            | $\delta V/\delta t$   | Measured at the AMD64 processor's                                                                                                                                   | 2     |      | 10   | V/ns  | 1     |
| Falling Edge Rate                           | $\delta V/\delta t$   | test load. 0 V +/- 400 mV (differential measurement)                                                                                                                | 2     |      | 10   | V/ns  | 1     |
| Differential Voltage                        | $V_{DIFF}$            |                                                                                                                                                                     | 0.4   | 1.25 | 2.3  | V     | 1     |
| Change in V <sub>DIFF_DC</sub><br>Magnitude | $\Delta V_{DIFF}$     | Measured at the AMD64 processor's                                                                                                                                   | -150  |      | 150  | mV    | 1     |
| Common Mode Voltage                         | $V_{CM}$              | test load. (single-ended measurement)                                                                                                                               | 1.05  | 1.25 | 1.45 | V     | 1     |
| Change in Common<br>Mode Voltage            | $\Delta V_{CM}$       |                                                                                                                                                                     | -200  |      | 200  | mV    | 1     |
| Jitter, Cycle to cycle                      | t <sub>jcyc-cyc</sub> | Measurement from differential wavefrom. Maximum difference of cycle time between 2 adjacent cycles.                                                                 | 0     | 100  | 200  | ps    | 1     |
| Jitter, Accumulated                         | t <sub>ja</sub>       | Measured using the JIT2 software package with a Tek 7404 scope. TIE (Time Interval Error) measurement technique: Sample resolution = 50 ps, Sample Duration = 10 us | -1000 |      | 1000 |       | 1,2,3 |
| Duty Cycle                                  | d <sub>t3</sub>       | Measurement from differential wavefrom                                                                                                                              | 45    |      | 53   | %     | 1     |
| Output Impedance                            | R <sub>ON</sub>       | Average value during switching transition. Used for determining series termination value.                                                                           | 15    | 35   | 55   | Ω     | 1     |
| Group Skew                                  | t <sub>src-skew</sub> | Measurement from differential wavefrom                                                                                                                              |       |      | 250  | ps    | 1     |

<sup>&</sup>lt;sup>1</sup>Guaranteed by design and characterization, not 100% tested in production.

<sup>&</sup>lt;sup>2</sup> All accumulated jitter specifications are guaranteed assuming that REF is at 14.31818MHz

<sup>&</sup>lt;sup>3</sup> Spread Spectrum is off



## **Electrical Characteristics - SRC 0.7V Current Mode Differential Pair**

 $\textbf{T}_{\text{A}} = \textbf{0 - 70}^{\circ}\text{C}; \ \textbf{V}_{\text{DD}} = 3.3 \ \textbf{V} \text{ +/-5\%}; \ \textbf{C}_{\text{L}} = 2 \text{pF}, \ \textbf{R}_{\text{S}} = 33.2 \Omega, \ \textbf{R}_{\text{P}} = 49.9 \Omega, \ \textbf{I}_{\text{REF}} = 475 \Omega$ 

| PARAMETER                       | SYMBOL                | CONDITIONS                                            | MIN     | TYP     | MAX     | UNITS | NOTES |
|---------------------------------|-----------------------|-------------------------------------------------------|---------|---------|---------|-------|-------|
| Current Source Output Impedance | Zo                    | $V_O = V_x$                                           | 3000    |         |         | Ω     | 1     |
| Voltage High                    | VHigh                 | Statistical measurement on                            | 660     |         | 850     | .,    | 1,3   |
| Voltage Low                     | VLow                  | single ended signal using oscilloscope math function. | -150    |         | 150     | mV    | 1,3   |
| Max Voltage                     | Vovs                  | Measurement on single ended                           |         |         | 1150    |       | 1     |
| Min Voltage                     | Vuds                  | signal using absolute value.                          | -300    |         |         | mV    | 1     |
| Crossing Voltage (abs)          | Vcross(abs)           |                                                       | 250     | 350     | 550     | mV    | 1     |
| Crossing Voltage (var)          | d-Vcross              | Variation of crossing over all edges                  |         | 12      | 140     | mV    | 1     |
| Long Accuracy                   | ppm                   | see Tperiod min-max values                            | -300    |         | 300     | ppm   | 1,2   |
|                                 |                       | 75.00 MHz nominal                                     | 8.5684  | 8.5714  | 8.5744  | ns    | 2     |
|                                 |                       | 75.00 MHz spread                                      | 8.5684  |         | 8.6244  | ns    | 2     |
|                                 |                       | 100.00 MHz nominal                                    | 9.9970  | 10.0000 | 10.0030 | ns    | 2     |
| Average period                  | Tperiod               | 100.00 MHz spread                                     | 9.9970  |         | 10.0530 | ns    | 2     |
| Average period                  | Тропоа                | 116.67 MHz nominal                                    |         | 13.3333 |         | ns    | 2     |
|                                 |                       | 116.67 MHz spread                                     | 13.3303 |         | 13.3863 | ns    | 2     |
|                                 |                       | 133.33 MHz nominal                                    | 7.4972  | 7.5002  | 7.5032  | ns    | 2     |
|                                 |                       | 133.33 MHz spread                                     | 7.4972  |         | 7.5532  | ns    | 2     |
| Absolute min period             | Tabsmin               | @100.00MHz nominal/spread                             | 9.8720  |         |         | ns    | 1,2   |
| Rise Time                       | t <sub>r</sub>        | $V_{OL} = 0.175V, V_{OH} = 0.525V$                    | 175     |         | 700     | ps    | 1     |
| Fall Time                       | t <sub>f</sub>        | $V_{OH} = 0.525V V_{OL} = 0.175V$                     | 175     |         | 700     | ps    | 1     |
| Rise Time Variation             | d-t <sub>r</sub>      |                                                       |         | 30      | 125     | ps    | 1     |
| Fall Time Variation             | d-t <sub>f</sub>      |                                                       |         | 30      | 125     | ps    | 1     |
| Duty Cycle                      | d <sub>t3</sub>       | Measurement from differential wavefrom                | 45      |         | 55      | %     | 1     |
| Group Skew                      | t <sub>src-skew</sub> | Measurement from differential wavefrom                |         |         | 250     | ps    |       |
| Jitter, Cycle to cycle          | t <sub>jcyc-cyc</sub> | Measurement from differential wavefrom                |         |         | 100     | ps    | 1     |

<sup>&</sup>lt;sup>1</sup>Guaranteed by design and characterization, not 100% tested in production.

<sup>&</sup>lt;sup>2</sup> All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REF is at 14.31818MHz  $^3$ I<sub>REF</sub> = V<sub>DD</sub>/(3xR<sub>R</sub>). For R<sub>R</sub> = 475Ω (1%), I<sub>REF</sub> = 2.32mA. I<sub>OH</sub> = 6 x I<sub>REF</sub> and V<sub>OH</sub> = 0.7V @ Z<sub>O</sub>=50Ω.



## **Electrical Characteristics - PCI33, HTT66 Clocks**

 $T_A = 0 - 70^{\circ}C$ ; VDD=3.3V +/-5%;  $C_L = 30$  pF (unless otherwise specified)

| PARAMETER              | SYMBOL                | CONDITIONS                                       | MIN     | TYP | MAX     | UNITS | NOTES |
|------------------------|-----------------------|--------------------------------------------------|---------|-----|---------|-------|-------|
| Long Accuracy          | ppm                   | see Tperiod min-max values                       | -300    |     | 300     | ppm   | 1,2   |
| PCI33 Clock period     | т                     | 33.33MHz output nominal                          | 29.9910 |     | 30.0090 | ns    | 2     |
| POISS Clock period     | T <sub>period</sub>   | 33.33MHz output spread                           | 29.9910 |     | 30.1598 | ns    | 2     |
| HTT66 Clock period     | т                     | 66.67MHz output nominal                          | 14.9955 |     | 15.0045 | ns    | 2     |
| HTT00 Clock pellou     | T <sub>period</sub>   | 66.67MHz output spread                           | 14.9955 |     | 15.0799 | ns    | 2     |
| Output High Voltage    | $V_{OH}$              | $I_{OH} = -1 \text{ mA}$                         | 2.4     |     |         | V     | 1     |
| Output Low Voltage     | $V_{OL}$              | I <sub>OL</sub> = 1 mA                           |         |     | 0.55    | V     | 1     |
| Output High Current    | 1                     | $V_{OH} @MIN = 1.0 V$                            | -33     |     | -46     | mA    | 1     |
| Output High Current    | I <sub>OH</sub>       | $V_{OH}$ @ MAX = 3.135 V                         | -50     |     | -80     | mA    | 1     |
| Output Low Current     | 1                     | V <sub>OL</sub> @ MIN = 1.95 V                   | 47      |     | 64      | mA    | 1     |
| Output Low Current     | I <sub>OL</sub>       | $V_{OL}$ @ MAX = 0.4 V                           | 58      |     | 91      | mA    | 1     |
| Edge Rate              | $\delta V/\delta t$   | Rising edge rate                                 | 1       |     | 4       | V/ns  | 1     |
| Edge Rate              | $\delta V/\delta t$   | Falling edge rate                                | 1       |     | 4       | V/ns  | 1     |
| Rise Time              | t <sub>r1</sub>       | $V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$ | 0.5     |     | 2       | ns    | 1     |
| Fall Time              | t <sub>f1</sub>       | $V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$ | 0.5     |     | 2       | ns    | 1     |
| Duty Cycle             | d <sub>t1</sub>       | V <sub>T</sub> = 1.5 V                           | 45      |     | 55      | %     | 1     |
| Skew                   | t <sub>sk1</sub>      | $V_{T} = 1.5 \text{ V}$                          |         |     | 500     | ps    | 1     |
| Jitter, Cycle to cycle | t <sub>jcyc-cyc</sub> | $V_{T} = 1.5 \text{ V}$                          |         |     | 180     | ps    | 1     |

<sup>&</sup>lt;sup>1</sup>Guaranteed by design and characterization, not 100% tested in production.
<sup>2</sup> All Long Term Accuracy and Clock Period specifications are guaranteed with the assumption that REF is at 14.31818MHz



# **Electrical Characteristics - 48MHz, USB**

 $T_A = 0 - 70^{\circ}C$ ;  $V_{DD} = 3.3 \text{ V +/-5\%}$ ;  $C_L = 10\text{-}20 \text{ pF}$  (unless otherwise specified)

|                        |                       | . ,                                              |         |      |         |       |       |
|------------------------|-----------------------|--------------------------------------------------|---------|------|---------|-------|-------|
| PARAMETER              | SYMBOL                | CONDITIONS                                       | MIN     | TYP  | MAX     | UNITS | Notes |
| Long Accuracy          | ppm                   | see Tperiod min-max values                       | -200    |      | 200     | ppm   | 1,2   |
| Clock period           | $T_{period}$          | 48.00MHz output nominal                          | 20.8257 |      | 20.8340 | ns    | 2     |
| Output High Voltage    | $V_{OH}$              | $I_{OH} = -1 \text{ mA}$                         | 2.4     |      |         | ٧     | 1     |
| Output Low Voltage     | $V_{OL}$              | I <sub>OL</sub> = 1 mA                           |         |      | 0.55    | V     | 1     |
| Output High Current    |                       | V <sub>OH</sub> @ MIN = 1.0 V                    | -33     |      | -46     | mA    | 1     |
| Output High Current    | I <sub>OH</sub>       | $V_{OH}$ @ MAX = 3.135 V                         | -50     |      | -80     | mA    | 1     |
| Output Low Current     | ı                     | V <sub>OL</sub> @MIN = 1.95 V                    | 47      |      | 64      | mA    | 1     |
| Output Low Current     | I <sub>OL</sub>       | $V_{OL}$ @ MAX = 0.4 V                           | 58      |      | 91      | mA    | 1     |
| Edge Rate              | $\delta V/\delta t$   | Rising edge rate                                 | 1       |      | 2       | V/ns  | 1     |
| Edge Rate              | $\delta V/\delta t$   | Falling edge rate                                | 1       |      | 2       | V/ns  | 1     |
| Rise Time              | t <sub>r1</sub>       | $V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$ | 1       | 1.43 | 2       | ns    | 1     |
| Fall Time              | t <sub>f1</sub>       | $V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$ | 1       | 1.33 | 2       | ns    | 1     |
| Duty Cycle             | d <sub>t1</sub>       | V <sub>T</sub> = 1.5 V                           | 45      | 50   | 55      | %     | 1     |
| Jitter, Cycle to cycle | t <sub>jcyc-cyc</sub> | $V_{T} = 1.5 V$                                  |         |      | 150     | ps    | 1     |

<sup>&</sup>lt;sup>1</sup>Guaranteed by design and characterization, not 100% tested in production.
<sup>2</sup> All Long Term Accuracy and Clock Period specifications are guaranteed with the assumption that REF is at 14.31818MHz

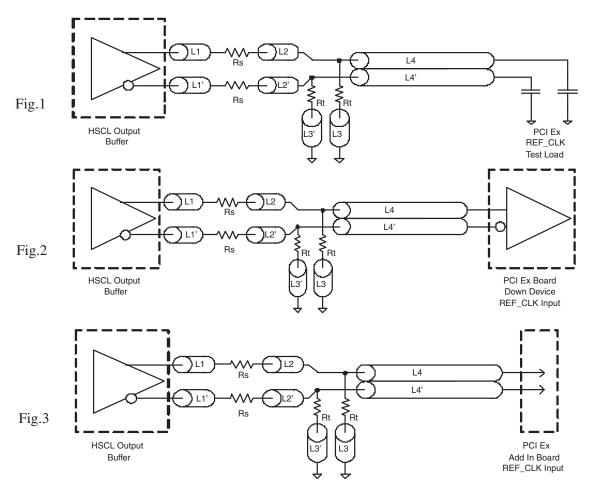


## **Electrical Characteristics - REF-14.318MHz**

 $T_A = 0 - 70$ °C;  $V_{DD} = 3.3 \text{ V +/-5\%}$ ;  $C_L = 10\text{-}20 \text{ pF}$  (unless otherwise specified)

| PARAMETER              | SYMBOL                | CONDITIONS                                       | MIN     | TYP | MAX     | UNITS | NOTES |
|------------------------|-----------------------|--------------------------------------------------|---------|-----|---------|-------|-------|
| Long Accuracy          | ppm                   | see Tperiod min-max values                       | -300    |     | 300     | ppm   | 1     |
| Clock period           | T <sub>period</sub>   | 14.318MHz output nominal                         | 69.8270 |     | 69.8550 | ns    | 2     |
| Output High Voltage    | V <sub>OH</sub>       | $I_{OH} = -1 \text{ mA}$                         | 2.4     |     |         | V     | 1     |
| Output Low Voltage     | $V_{OL}$              | $I_{OL} = 1 \text{ mA}$                          |         |     | 0.4     | V     | 1     |
| Output High Current    | ı                     | $V_{OH} @MIN = 1.0 V$                            | -29     |     | -41     | mA    | 1     |
| Output High Current    | I <sub>OH</sub>       | $V_{OH}@MAX = 3.135 V$                           | -45     |     | -71     | mA    | 1     |
| Output Low Current     | ı                     | V <sub>OL</sub> @MIN = 1.95 V                    | 39      |     | 54      | mA    | 1     |
| Output Low Current     | I <sub>OL</sub>       | $V_{OL} @MAX = 0.4 V$                            | 49      |     | 77      | mA    | 1     |
| Edge Rate              | $\delta V/\delta t$   | Rising edge rate                                 | 1       |     | 4       | V/ns  | 1     |
| Edge Rate              | $\delta V / \delta t$ | Falling edge rate                                | 1       |     | 4       | V/ns  | 1     |
| Rise Time              | t <sub>r1</sub>       | $V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$ | 1       |     | 2       | ns    | 1     |
| Fall Time              | t <sub>f1</sub>       | $V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$ | 1       |     | 2       | ns    | 1     |
| Skew                   | t <sub>sk1</sub>      | $V_{T} = 1.5 V$                                  |         |     | 500     | ps    | 1     |
| Duty Cycle             | d <sub>t1</sub>       | V <sub>T</sub> = 1.5 V                           | 45      | 50  | 55      | %     | 1     |
| Jitter, Cycle to cycle | t <sub>jcyc-cyc</sub> | $V_{T} = 1.5 V$                                  |         |     | 300     | ps    | 1     |

<sup>&</sup>lt;sup>1</sup>Guaranteed by design and characterization, not 100% tested in production.


<sup>&</sup>lt;sup>2</sup> All Long Term Accuracy and Clock Period specifications are guaranteed with the assumption that REF is at 14.31818MHz



| SRC Reference Clock                             |                    |      |        |  |  |  |
|-------------------------------------------------|--------------------|------|--------|--|--|--|
| Common Recommendations for Differential Routing | Dimension or Value | Unit | Figure |  |  |  |
| L1 length, Route as non -coupled 50 ohm trace.  | 0.5 max            | inch | 2, 3   |  |  |  |
| L2 length, Route as non -coupled 50 ohm trace.  | 0.2 max            | inch | 2, 3   |  |  |  |
| L3 length, Route as non -coupled 50 ohm trace.  | 0.2 max            | inch | 2, 3   |  |  |  |
| Rs                                              | 33                 | ohm  | 2, 3   |  |  |  |
| Rt                                              | 49.9               | ohm  | 2, 3   |  |  |  |

| Down Device Differential Routing                                          | Dimension or Value  | Unit | Figure |
|---------------------------------------------------------------------------|---------------------|------|--------|
| L4 length, Route as coupled <b>microstrip</b> 100 ohm differential trace. | 2 min to 16 max     | inch | 2      |
| L4 length, Route as coup led <b>stripline</b> 100 ohm differential trace. | 1.8 min to 14.4 max | inch | 2      |

| Differential Routing to PCI Express Connector         | Dimension or Value | Unit | Figure |
|-------------------------------------------------------|--------------------|------|--------|
| L4 length, Route as coupled <b>microstrip</b> 100 ohm | 0.25 to 14 max     | inch | 3      |
| differential trace.                                   |                    |      |        |
| L4 length, Rout e as coupled stripline 100 ohm        | 0.225 min to 12.6  | inch | 3      |
| differential trace.                                   | max                |      |        |





# Shared Pin Operation - Input/Output Pins

The I/O pins designated by (input/output) on the ICS951412B serve as dual signal functions to the device. During initial power-up, they act as input pins. The logic level (voltage) that is present on these pins at this time is read and stored into a 5-bit internal data latch. At the end of Power-On reset, (see AC characteristics for timing values), the device changes the mode of operations for these pins to an output function. In this mode the pins produce the specified buffered clocks to external loads.

To program (load) the internal configuration register for these pins, a resistor is connected to either the VDD (logic 1) power supply or the GND (logic 0) voltage potential. A 10 Kilohm (10K) resistor is used to provide both the solid CMOS programming voltage needed during the power-up programming period and to provide an insignificant load on the output clock during the subsequent operating period.

Figure 1 shows a means of implementing this function when a switch or 2 pin header is used. With no jumper is installed the pin will be pulled high. With the jumper in place the pin will be pulled low. If programmability is not necessary, than only a single resistor is necessary. The programming resistors should be located close to the series termination resistor to minimize the current loop area. It is more important to locate the series termination resistor close to the driver than the programming resistor.

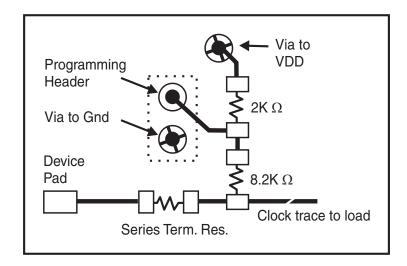
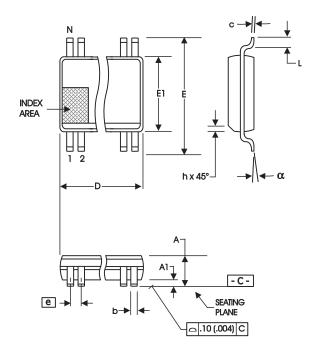




Fig. 1



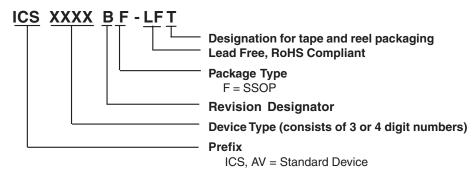


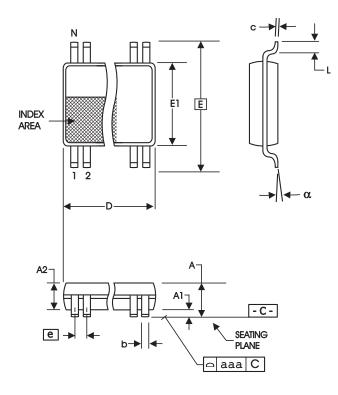
56-Lead, 300 mil Body, 25 mil, SSOP

|        |                | meters    | In Inches         |          |  |
|--------|----------------|-----------|-------------------|----------|--|
| SYMBOL |                | IMENSIONS | COMMON DIMENSIONS |          |  |
|        | MIN            | MAX       | MIN               | MAX      |  |
| Α      | 2.41           | 2.80      | .095              | .110     |  |
| A1     | 0.20           | 0.40      | .008              | .016     |  |
| b      | 0.20           | 0.34      | .008              | .0135    |  |
| С      | 0.13           | 0.25      | .005              | .010     |  |
| D      | SEE VAF        | RIATIONS  | NS SEE VARIATIONS |          |  |
| E      | 10.03          | 10.68     | .395              | .420     |  |
| E1     | 7.40           | 7.60      | .291              | .299     |  |
| е      | 0.635 BASIC    |           | 0.025 BASIC       |          |  |
| h      | 0.38           | 0.64      | .015              | .025     |  |
| L      | 0.50           | 1.02      | .020              | .040     |  |
| N      | SEE VARIATIONS |           | SEE VAF           | RIATIONS |  |
| а      | 0°             | 8°        | 0°                | 8°       |  |

## VARIATIONS

| N  | D mm. |       | D (inch) |      |  |
|----|-------|-------|----------|------|--|
| N  | MIN   | MAX   | MIN      | MAX  |  |
| 56 | 18.31 | 18.55 | .720     | .730 |  |


Reference Doc.: JEDEC Publication 95, MO-118


10-0034

# **Ordering Information**

## ICS951412BFLFT

Example:



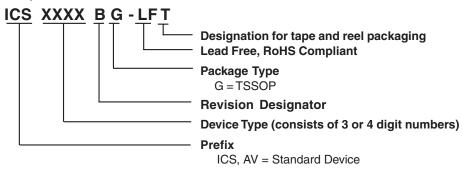


56-Lead 6.10 mm. Body, 0.50 mm. Pitch TSSOP

| (240 mil) (20 mil) |                |                |                   |         |  |
|--------------------|----------------|----------------|-------------------|---------|--|
|                    | In Millir      | neters         | In Inches         |         |  |
| SYMBOL             | COMMON DI      | IMENSIONS      | COMMON DIMENSIONS |         |  |
|                    | MIN            | MAX            | MIN               | MAX     |  |
| Α                  |                | 1.20           |                   | .047    |  |
| A1                 | 0.05           | 0.15           | .002              | .006    |  |
| A2                 | 0.80           | 1.05           | .032              | .041    |  |
| b                  | 0.17           | 0.27           | .007              | .011    |  |
| С                  | 0.09           | 0.20           | .0035             | .008    |  |
| D                  | SEE VARIATIONS |                | SEE VARIATIONS    |         |  |
| E                  | 8.10 BASIC     |                | 0.319 E           | BASIC   |  |
| E1                 | 6.00           | 6.20           | .236              | .244    |  |
| е                  | 0.50 BASIC     |                | 0.020 BASIC       |         |  |
| L                  | 0.45           | 0.75           | .018              | .030    |  |
| N                  | SEE VAR        | SEE VARIATIONS |                   | IATIONS |  |
| а                  | 0°             | 8°             | 0°                | 8°      |  |
| aaa                |                | 0.10           |                   | .004    |  |

## **VARIATIONS**

| N  | D mm. |       | D (inch) |      |  |
|----|-------|-------|----------|------|--|
|    | MIN   | MAX   | MIN      | MAX  |  |
| 56 | 13.90 | 14.10 | .547     | .555 |  |


Reference Doc.: JEDEC Publication 95, MO-153

10-0039

# **Ordering Information**

ICS951412BGLFT

Example:





**Revision History** 

| Rev. | Issue Date | Description     | Page # |
|------|------------|-----------------|--------|
|      |            |                 |        |
|      |            |                 |        |
| Α    | 6/12/2006  | Initial Release | -      |
|      |            |                 |        |
|      |            |                 |        |

#### IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.0 Mar 2020)

## **Corporate Headquarters**

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

## **Trademarks**

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

## **Contact Information**

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/