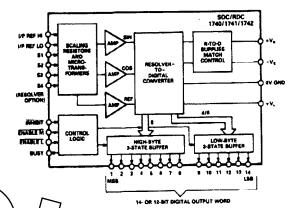


12- and 14-Bit Hybrid Synchro/ **Resolver-to-Digital Converters**

SDC/RDC1740/1741/1742

FEATURES

Internal isolating Transformers Military Temperature Range Three Accuracy Options 14-Bit or 12-Bit Resolution High, Continuous Tracking Rate 32-Pin Welded Metal Package Hermetically Sealed Ratiometric Conversion Laser Trimmed - No External Adjustment Three-State Latched Outputs


APPLICATIONS Flight Instrumentation Systems Military Servo Control Systems Artillery Fire Control Systems Avionic Systems Antenna Monitoring Robotics **Engine Controllers**

Coordinate Conversion **Axis Transformation CNC Machine Tooling Process Control**

GENERAL DESCRIPTION

The SDC/RDC1740/1741/1742 are hybrid 14- or 12-bit continous tracking synchro or resolver to digital converters contained in 32-pin welded metal packages. In the core of this hybrid the conversion process is performed by a monolithic IC manufactured in Analog Devices proprietary BiMOS II process that combines the advantages of CMOS logic and bipolar high accuracy linear circuits on the same chip. Internal isolating microtransformers are used to provide true isolation of the signal and reference inputs. The 14- or 12-bit digital word is in a threestate digital form available in two bytes. Using separate EN-ABLE inputs for the most significant 8 bits and the least significant 6 or 4 bits not only simplifies multiplexing of more than one device onto a single data bus, but also enables the IN-HIBIT input to be used without interrupting the operation of the tracking loop. The converters are hermetically scaled in a 32-pin welded metal package.

FUNCTIONAL BLOCK DIAGRAM

MODELS AVAILABLE

the three synchro/resolver-to-digital converters described in this sheet differ primarily in the areas of resolution, accuracy and dynamic performance as follows:

Model SDC1740XYZ is a 14-bit converter with an overall accel racy of ±5.3 are minutes and a resolution of 1.3 arc minutes. Model SDC17+1KYZ is a 12-bit converter with/an overall accu racy of ±15.3 arc minutes and a resolution of \$.3 a/c minutes

Model SDC1742XYZ is a 12-bit converter with an overall acturacy of ±8.5 arc minutes and a resolution of 5.3 arc minute

Each model has two operating temperature range versions, those covering the industrial temperature range (0 to +70°C) and the military temperature range (-55°C to +125°C). The XYZ code defines the option as follows: (X) signifies the operating temperature range, (Y) signifies the reference frequency, (Z) signifies the signal and reference voltage whether it will accept synchro or resolver format. To ensure a high level of reliability each converter receives stringent precap visual inspection, environmental screening and final electrical test.

Military temperature range devices and those processed to high reliability screening standards (suffix B) receive further levels of testing and screening to ensure high levels of reliability. More information about the option codes is given under the heading Ordering Information.

REV. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

Tel: 617/329-4700

West Coast 714/641-9391

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Fax: 617/326-8703

> Central 214/231-5094

Twx: 710/394-6577 Atlantic 215/643-7790

SDC/RDC1740/1741/1742—SPECIFICATIONS (typical at 25°C unless otherwise specified)

Parameter	SDC/RDC1740	SDC/RDC1741	SDC/RDC1742	Units	Comments	Notes
CONVERTER PERFORMANCE						
Accuracy	±5.3 max	±15.3 max	±8.5 max	arc min	and the same of th	1, 3
Tracking Rate	27 min	18 min	**	rcv/s		4
Resolution	14	12	**	Bits	Output Coding Parallel	
210001811011	(1 LSB = 1.3)	(1 LSB = 5.3)	**		Natural Binary	
	arc min)	arc min)		Į		
Signal & Reference Frequency	400	*	*	Hz	Option X1Z	
Signal & Reference Frequency	2.6			kHz	Option X4Z	1
December of Decision Opposes	1	1.	* .	LSB	CPIRAL AVID	4
Repeatability of Position Output		160	**	Hz	l	4
Bandwidth	130	150		F12		<u> </u>
IGNAL INPUT IMPEDANCE		İ				1
90V Signal	200	*	*	kΩ	Resistive Tolerance ±2%	4
26V Signal	57.7		*	k(1		4
11.8V Signal	26		•	kΩ		4
		_	ļ			+
EFERENCE INPUTS				1		i
Reference Voltage	11.8, 26, 115	*	*	V rms	See Ordering	i
Reference Impedance		į		1	Information	1
112 V Ref	120	*	•	kΩ	Resistive Tolerance ±5%	4
/ 26 // Reft ())	127	*	*	kΩ		4
1)/.8V/Ref	12.3	•	*	kΩ		4
CELERATION CONSTANT	56000	80000	**	sec 2	Symbol K _a	4
		·/		 		
ARGE STEP RESPONSE	BYLLE	60 900	** \	ms	179° Step for Settling to	1, 3
	100 max	75/max	† / /	ms	1 LSB of Error	1
OWER LINES	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					
	28 typ 35 max	.i . l	1 / /	mA /	Quiescent Condition	1, 3
$+V_{5}=+15V$	28 typ 35 max	V.V	/. / /	mA /	Quiescent Condition	— 3
$-V_{s} = -15V$	1	\sim	Y .	mA /	Quiescent Condition	4.3
$V_L = +5V$	35 typ 56 max		1 1	w/	Quiessen (xindidon	
Power Dissipation	1.4 max			_ w /		1
DIGITAL INPUTS (INHIBIT,				$\sqcap T$		<u>/</u>
ENABLE L, ENABLE M)		1		4 ['	<u> </u>	1
V (Input High)	2 min	1	•	V dc	V, -+5V/	1,3
V (Input Low)	0.7 max	•	•	V dc	V _L =+5V	1,3
	20 max	•	•	μΛ	V _{IH} =2.4V	1,3/
I (Input High)	-400 max	•		μΛ	V _{II.} =0.4V	1,3
I (Input Low)	400 max				1110.44	
NABLE AND DISABLE TIME	80 max	•	•	ns	!	2, 4
NHIBIT						
Sense	Logic Low		*		Ì	
361136	to INHIBIT		*	1		
Time to Date Carble (after	I IGHTEN OF					
Time to Data Stable (after						1
Negative-Going Edge	610	*	•	ne		4
of INHIBIT)	640 max			ns		-
USY OUTPUT				1	ļ	İ
Sense		Active Logic High v	then converter positi	on output ch	anging.	
Timing			50ns before change			
Width			١	1		1
	400 typ		•	ns		4
	200 min		*	ns		4
	600 max		*	ns		4
Lord	2 min		•	TTL		4
Load	4 IUH	<u> </u>		1		
DIGITAL OUTPUTS						i
Voltage Levels						}
Logic High	2.4 min	*	•	V dc	$V_L = +5V$	1, 3
				1	I _{OU} = -240μA	ł
Logic Low	0.4 max		*	V dc	V _{1.} =+5V	1, 3
SOBIE SON		a.			I _{OL} = 9.6mA	
				TTL	1 -01	
Load	6 max					

Parameter	SDC/RDC1740	SDC/RDC1741	SDC/RDC1742	Units	Comments	Note
OPERATING TEMPERATURE RANGE						
Option 5YZ	0 to + 70	*	*	•c		
Option 4YZ	-55 to +125	*	•	•℃		
DIMENSIONS	1.74×1.14×0.28	*	*	Inch	See Package	4
	(44.2×28.9×7.1)	*	*	mm	Information	
WEIGHT	0.86 max	*	*	oz		4
	25 max	*		grams		

NOTES

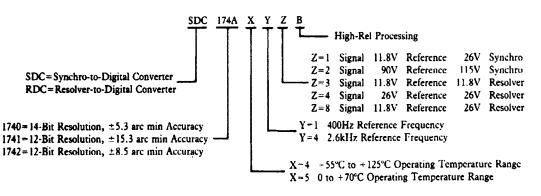
ENABLE M enables most significant 8 bits. ENABLE L enables least significant 4 bits (or 6 bits for SDC/RDC1740).

3100% tested at nominal values of power supplies, input signal voltages and operating frequency. Guaranteed by design.

Specifications same as SDC/RDC1740.

**Specifications same as SBC/RDC1741.

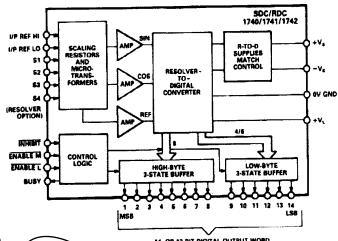
ABSOLUTE MAXIMUM RATINGS	
+V _s / to GND)	. /. +17.25V dc
$-V_{\infty}^{2}$ ω GND \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots	//17.25V dc
$+V_L^2$ to GND	/ ± 7V dc)
Reference Input HI to GND	(.±350V dc/
Reference Input LO to GND	∖\±350V dy/
Common Mode Range	175V rms
\$1, \$2, \$3, \$4 to GND	±350V de
Any Logical Input to GND	$0.4V$ to $+V_L$


Case to GND±20V dc

¢aut/ion: orrect polarity voltages must be maintained on the +Vs and -Vs pins. The er go/below GND potential.

Alsolute maximum ratings vice may occur.

ORDERING INFORMATION


For full definition, the converter part number should be suffixed by an option code. All the standard options and their option codes are shown below. For options not shown, please consult Analog Devices.

Specified over the appropriate operating temperature range and for: (a) $\pm 10\%$ signal and reference amplitude variation; (b) $\pm 10\%$ signal and reference harmonic distortion; (c) $\pm 5\%$ power supply variation; (d) $\pm 10\%$ variation in reference frequency.

PIN CONFIGURATION PIN FUNCTION DESCRIPTION Pin Mnemonic Description 1-14 Bit 1-14 (1740) Parallel output data bits. (D) œ Bit 1-12 (1741/1742) 1-12 0 0 0 **(20)** 15 REF LO Input pins for the reference signal. BIT I REF HI 16 **1** 0 ٠٧, S4 signal input for Resolver 17 S4 OR N/C **②** AN HAVE ◐ option. N/C for Synchro option. 0 @ BUEY 901 4 18 **S3** 0 **(3)** Synchro/Resolver input signals. ENABLE M 19 S2 SIT 20 \$1 ENABLE L 0 ➌ N/C No Connection. 21 0 ❷ N/C **②** 22 N/C No Connection. 19 @ 23 CASE Should be connected to 0V GND. € N/C N/C No Connection. (B) **@** 24 ENABLE L ENABLE L enables the 6 or 4 @ 25 least significant bits. **(1)** ENABLE M enables the 8 most **ENABLE M (1)** ਢ **S**3 significant bits. Logic High sets the output data bits to a high impedance state; a logic Low-presents the data in the FOR THE RESOLVER OPTION PIN 17 FOR THE SYNCHRO SPETION PIN NOT CONNECTED. latehes to the output pins. NOTE 2. FOR THE 1741 AND 1742 PINS 12 AND 14 AME NOT CONNECTED. Converter busy. A Logic High 27 BUSY output indicates that the output tatches are being undated and Weight in Degrees Bit Number data should not be/transferred. 180.0000 1 (MSB) Logic Low inhibits the data 28 **INHIBIT** 90.0000 2 transfer from the counter to the 45.0000 output latches. 22,5000 $+V_s$ Main positive power supply. 29 11.2500 5.6250 **OV GND** Power supply ground. 2.8125 Main negative power supply. 31 $-V_{\text{s}}$ 1.4063 Logic power supply. 0.7031 32 $+V_1$ 9 10 0.3516 0.1758 11 12 (LSB for 1741/1742) 0.0879 0.0439 0.0220 14 (LSB for 1740)

Table I. Bit Weight Table

14. OR 12-BIT DIGITAL OUTPUT WORD

Functional Diagram of the SDC/RDC1740/1741/1742 (igure

THEORY OF OPERATION

In the synchro-to-digital converter configuration, the B-wire synchro output should be connected to \$1, \$2 and \$3 on the unit and the Scott T transformer pair will convert these signals into resolver format, i.e.,

(SIN) $V_1 = K E_O \sin \omega t \sin \theta$

(COS) V₂=K E_O sin ωt cos θ

where θ is the angle of the synchro shaft.

In the resolver-to-digital converter configuration, the 4-wire resolver output should be connected to S1, S2, S3 and S4 on the unit and the transformers will act purely as isolators.

To understand the conversion process, then assume that the current word state of the up-down counter is ϕ .

 V_1 is multiplied by COS ϕ and V_2 is multiplied by SIN ϕ to give:

K Eo sin ωt sin θ cos φ

and K Eo sin wt cos e sin o.

These signals are subtracted by the error amplifier to give:

 $K E_O \sin \omega t (\sin \theta \cos \phi - \cos \theta \sin \phi)$

or $K E_O \sin \omega t \sin (\theta - \phi)$.

A phase sensitive detector, integrator and voltage controlled oscillator (VCO) form a closed loop system which seeks to null $\sin (\theta - \phi)$. The digital output (counter ϕ), then represents the synchro/resolver shaft angle θ within the specified accuracy of the converter.

INHIBIT INPUT

The INHIBIT logic input only inhibits the data transfer from the up-down counter to the output latches and, therefore, does not interrupt the operation of the tracking loop. Releasing the INHIBIT automatically generates a busy pulse to refresh the output data.

ENABLE INPUTS

The HNABLE inputs determine the state of the output data. A logic High maintains the output data pursyin the high impedcondition, and application of a Logic Low presents the data in the latches to the output pins. ENABLE M enables the most significant 8 bits, while ENABLE L, enables the least significant 8 niscant 4 bits (6 bits in the SDCRDC1740). The operation of the ENABLE inputs has no effect on the conversion process.

DATA TRANSFER

Data transfer can be accomplished using either the/INHIBIT input or the trailing edge, positive to negative transition of the BUSY pulse output.

The data will be valid 640ns after the application of a Logic Lo to the INHIBIT input. This is regardless of the time when the INHIBIT is applied and allows time for an active busy pulse to clear. By using the ENABLE M and ENABLE L inputs the two bytes of data can be transferred after which the INHIBIT should be returned to a Logic Hi state to enable the output latches to be updated.

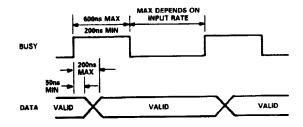


Figure 2. Timing Diagram

BUSY OUTPUT

The validity of the output data is indicated by the state of the BUSY output. When the input to the converter is changing, the signal appearing on the BUSY output is a series of pulses at TTL levels. A BUSY is initiated each time the input moves by an analog equivalent of an LSB and the internal counter is incremented or decremented or the INHIBIT input is released.

Typically the width of the BUSY pulse is 400ns during the position data output updates. The trailing edge, positive to negative transition, of the BUSY pulse indicates that the position data output has been updated and is ready for transfer (data valid). The maximum load on the BUSY output using the trailing edge of the BUSY pulse is 2 TTL loads.

CONNECTING THE CONVERTER

The power supply voltages connected to $+V_s$ and $-V_s$ pins should be $\pm 15V$ and must not be reversed. The digital logic supply V_L is connected to +5V.

It is suggested that a parallel combination of a 0.1 µF ceramic and a 6.8 µF electrolytic dapacitor is placed from each of the three supply pins to GND.

The pin marked CASE is connected electrically to the case and should be taken to a convenient zero volt potential in the system.

The digital output is taken from Pin 1-through to Pin 12 for the SDC/RDC1741/1742 and Pin 1-through to Pin 14 for the SDC/RDC1740 where Pin 1 is the MSB.

The reference connections are made to REF HI and REF LO.

In the case of a synchro, the signals are connected to S1, S2 and S3 according to the following convention:

E_{S1-S3}=E_{RLO-RHI} sin ωt sin θ

 $E_{S3-S2} = E_{RLO-RHI} \sin \omega t \sin (\theta + 120^\circ)$

 $E_{S2-S1} = E_{RLO-RHI} \sin \omega t \sin (\theta + 240^{\circ})$

For a resolver, the signals are connected to S1, S2, S3 and S4 according to the following convention:

Esi-si=ERLO-RHI sin ot sin A

 $E_{S2-S4} = E_{RHI-RLO} \sin \omega t \cos \theta$

The BUSY, INHIBIT and ENABLE pins should be connected as described under the heading Data Transfer.

RESISTIVE SCALING OF INPUTS

A feature of these converters is that the signal and reference inputs can be resistively scaled to accommodate any change of input signal and reference voltages.

This means that a standard converter can be used with a personality card in systems where a wide range of input and reference voltages are encountered.

Note: The accuracy of the converter will be affected by the matching accuracies of resistors used for external scaling.

To calculate the values of the external scaling resistors in the case of a synchro converter, add 1.11k Ω per extra volt of signal in series with S1, S2 and S3 and 1k Ω per extra volt of reference in series with RHI. In the case of a resolver-to-digital converter, add 2.22k Ω in series with S1 and S2 per extra volt of signal and 1k Ω per extra volt of reference in series with RHI.

DYNAMIC PERFORMANCE

The transfer function of the converter is given below.

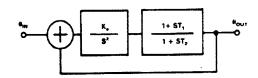


Figure 3. Transfer Function of SDC/RDC1740/1741/1742

Open loop gain:

$$\frac{\theta_{OUT}}{\theta_{IN}} = \frac{K_4}{S^2} \cdot \frac{1 + ST_1}{1 + ST_2}$$

Closed loop gain:

$$\frac{\theta_{\text{OUT}}}{\theta_{\text{IN}}} = \frac{1 + ST_1}{1 + ST_1 + \frac{S^2}{K_a} + \frac{S^3T_2}{K_a}}$$

Model SDC/RDC1740

Where K_a=56,000 171=0.01

T2=0.001525
The gain and phase diagrams are shown in Figures 4/and

Model SDC/RDG1741/17/42

Where K_a=80,000

T1 = 0.0087

T2 = 0.001569

The gain and phase diagrams are shown in Figures 6 and 7.

ACCELERATION ERROR

A tracking converter employing a type 2 servo loop does not suffer any velocity lag, however, there is an additional error due to acceleration. This additional error can be defined using the acceleration constant $K_{\bf a}$ of the converter.

The numerator and denominator have the same units. K_a does not define maximum acceleration, only the error due to acceleration, maximum acceleration is in the region of 5 times the K_a figure. The following is an example using the K_a of the SDC1740.

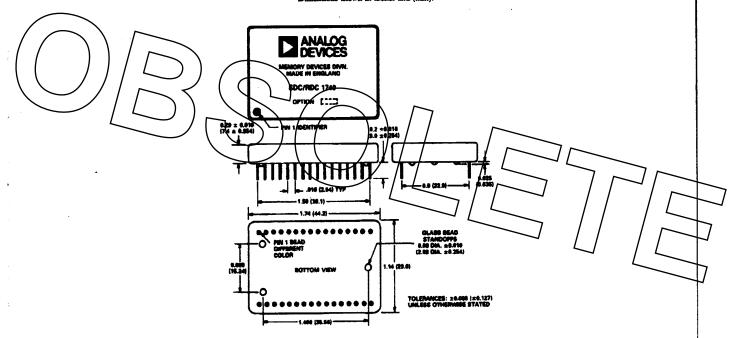
Acceleration of 50 revolutions sec⁻² with K_a=56000

Error in LSBs =
$$\frac{50 \times 16384}{56000}$$
 = 14.62LSBs

TEMPERATURE - C
Figure 8. SDC/RDC1740/41/42 MTBF Curve

125

OTHER PRODUCTS


Many other hybrid products concerned with the conversion of synchro data are manufactured by Analog Devices, some of which are listed below. If you have any questions about our products or require advice about their use for a particular application, please contact our Applications Engineering Department.

The SDC/RDC1767 and SDC/RDC1768 are hybrid synchroto-digital converters with isolating microtransformers similar to the SDC/RDC1740/41/42 described on this data sheet with the additional features of analog velocity output and dc error output. The OSC1758 is a hybrid sine/cosine power oscillator which can provide a maximum power output of 1.5 watts, over a frequency range of 0 to 10kHz.

The DRC1745 and DRC1746 are 14- and 16-bit natural binary latched output hybrid digital-to-resolver converters. The accuracies available are ± 2 and ± 4 arc mins, and the outputs can supply 2VA at 7V rms.

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

